VP \& RPTP Science College

Vallabh Vidyanagar
BSc Examination [Semester: V] 2019
Subject: Physics Course: US05CPHY02
Time: 11.00 am to $\mathbf{1 2 . 1 5 ~ p m}$
Total Marks: 25
Date 03-10-2019, Thursday

INSTRUCTIONS:

1 Attempt all questions.
2 The symbols have their usual meaning.
3 Figures to the right indicate full marks.
Q-1 Answer the following MCQ's with correct option. (1 Mark each)
(1) The matrix of order $n \times m$ obtained from any matrix A of order $m \times n$, by interchanging its rows and columns is called \qquad -
(a) Traspose of a Matrix
(b) Inverse of a Matrix
(c) Adjoint of a Matrix
(d) Cofactor of a Matrix
(2) The orthogonality condition for curvilinear co-ordinates is \qquad -
(a) $\frac{\partial r}{\partial u}, \frac{\partial u}{\partial v}=0$
(b) $\frac{\partial r}{\partial u} \cdot \frac{\partial r}{\partial u}=0$
(c) $\frac{\partial u}{\partial r} \cdot \frac{\partial v}{\partial r}=0$
(d) $\frac{\partial r}{\partial u} \cdot \frac{\partial r}{\partial v}=0$
(3) The generating function for Bessel's function of the order n is \qquad .
(a) $e^{\frac{x}{2}(t-1)}$
(b) e^{x}
(c) $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}$
(d) $e^{x\left(t-\frac{1}{t}\right)}$

(4) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by
(a) $\Delta H=K \Delta S\left|\frac{d u}{d t}\right|$
(a) $\Delta H=K \Delta S \Delta t\left|\frac{d u}{d t}\right|$
(c) $\Delta H=K \Delta t\left|\frac{d u}{d t}\right|$
(c) None of these
(5) \quad Shift operator $E=$ \qquad -
(a) $\Delta-1$
(b) $\nabla+1$
(c) $\delta+1$
(d) $\Delta+1$

Q-2 Derive expression of gradient in terms of orthogonal curvilinear coordinates.

Q-2 Derive expression of divergence in terms of orthogonal curvilinear coordinates.
Q-3 Derive the series solution of Legendre differential equation in the form of descending power of x only for $k=n$ i.e. only $P_{n}(x)$. (not for $\left.k=-n-1\right)$

OR
Q-3 Derive the series solution of Bessel's differential equation in the form of ascending power of x only for $k=+n$ i.e. only $J_{n}(x)$. (not for $k=-n$)
Q-4 Define Fourier series and Derive the expression of Fourier series in complex form for a periodic function $f(t)$ in the interval $(-\infty, \infty)$.

OR

Q-4 Define Fourier series and Derive the expression of Fourier series for a periodic function $f(x)$ in the interval $(-\pi, \pi)$.
Q-5 Define interpolation and extrapolation. Derive Newton's forward difference interpolation formula. 05

OR

Q-5 Using Lagrange's interpolation formula evaluate $y=f(5)$ from the given data.

$y=f(x)$	-3	0	30	132

