Vitthalbhai Patel \& Rajratna P.T.P.SCIENCE COLLEGE VALLABH VIDYANAGAR
 B.Sc. (Semester - 5)
 Subject: Physics
 Course: US05CPHY01 (Classical Mechanics)
 Internal Examination

Date: 01/10/2019
Tuesday
Time: 11:00 a.m. to 12:15 p.m.
N.B: (i) All the symbol have their usual meanings
(ii) Figures at the right side of questions indicate full marks

Q-1 Multiple Choice Questions (Attempt All)
(1) The electrostatic forces are very much \qquad than the gravitational forces in the interaction of atomic and subatomic particles
(a) poor
(b) equal
(c) stronger
(d) lower
(2) The number of independent variable for a free particle in space are \qquad
(a) three
(b) two
(c) one
(d) zero
(3) The generalized coordinates for motion of a particle moving on the surface of a sphere of radius ' a ' are \qquad
(a) a and θ
(b) θ and ϕ
(c) 0 and ϕ
(d) a and ϕ
(4) The Lagrange's equations of motion for a system is equivalent to \qquad equations of motion
(a) Laplace
(b) Poisson
(c) Maxwell's
(d) Newton's
(5) The path of the particle will be deflected towards \qquad in the southern hemisphere due to the Coriolis acceleration
(a) right
(b) up
(c) left
(d) down

Q-2 State and prove the Gauss' law for electrostatic fields
OR
Q-2 State and prove the Kepler's third law of planetary motion

Q-3 What is cyclic coordinates? Show that total energy is conserved
OR
Q-3 Construct the Lagrangian of Atwood machine and derive it's equation of motion

Q-4 Derive the expression of angular momentum for rotating body
OR
Q-4 Derive the expression of kinetic energy for rotating body

Q-5 Show that the shortest distance between two points in a plane is a straight line
OR
Derive the Hamilton's equation of motion

