V.P. \& R.P.T.P. Science College,V.V.Nagar

Subject: Mathematics
US05CMTH02
Max. Marks : 25
Real Analysis-II

[^0]Q: 1. Answer the following by choosing correct answers from given choices.
[1] The sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$, where $S_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)$
$[\mathrm{A}]$ is convergent $[\mathrm{B}]$ oscillates finitely $[\mathrm{C}]$ oscillates infinitely $[\mathrm{D}]$ is divergent
[2] A positive term serics $\sum_{n=1}^{\infty} \frac{1}{n^{\nu}}$ is convergent if and only if
[A] $p<1$
[B] $p>1$
[C] $p \leqslant 1$
[D] $p \geqslant 1$
[3] For $f(x, y)=x^{3}-3 x e^{y}$ the value of $f_{x}(1,0)$ is
[A] 0
[B] 1
[C] 2
[D] 3
[4] For a function f, if $f_{x}(a, b)<f_{y}(a, b)$ then at $(a, b), f$ has $[A]$ no extreme value $[B]$ a minimum $[C]$ a maximum $[D]$ a stationery point
[5] For a function f, if $f_{x}(1,5)=0, f_{y}(1,5) \neq 0$ then at $(1,5), f$ has $[A]$ an extreme value $[B]$ no extreme value $[C]$ a minimum $[D]$ a maximum

Q: 2. State and prove the Bolzano-Weierstarss theorem for sequence
OR
Q: 2. Show that the sequence $\left\{r^{n}\right\}$ converges iff $-1<r \leqslant 1$.
Q:3. State and prove the comparision test of first type.
OR
Q: 3. State and prove D^{\prime} Alembert's ratio test.
Q:-4. Show that $\lim _{(x, y) \rightarrow(0,0)} x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=0$
OR
Q: 4. Prove that, by the transformation $u=x-c t, v=x+c t$, the partial differential equation $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$ reduaces to $\frac{\partial^{2} z}{\partial u \partial u}=0$
Q: 5. State and prove Taylor's theorem
OR
Q:5. Find the maxima and minima of the function $x^{3}+y^{3}-3 x-12 y+20$

[^0]: Instruction : The symbols used in the paper have their usual meaning, unless specified.

