V.P. \& R.P.T.P. Science College,V.V.Nagar

 Internal Test: 2019-20Subject: Mathematics US05CMTH01

Max. Marks : 25
Real Analysis-I
Date: 01/10/2019
Timing: 11.00 am -12.15 pm
Instruction : The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.
[1] The infimum of the set $-1,1,-1 \frac{1}{2}, 1 \frac{1}{2},-1 \frac{1}{3}, 1 \frac{1}{3}, \ldots$
[A] -1
[B] 0
[C] $-1 \frac{1}{2}$
[D] $\frac{1}{2}$
[2] If $S=(1,5)-\{3\}$, then 3 is
[A] a limit point of S
[B] an intcrior point of S
[C] interior point as well as limit point of S
[D] none
[3] If a function $f(x)$ has a discontinuity of first type at $x=2$ then $\lim _{x \rightarrow 2-} f(x)$ and $\lim _{x \rightarrow 2+} f(x)$ both
[A] do not exist
[B] exist and they are equal
[C] exist but they are not equal
[D] cannot exist togather
[4] If $f^{\prime}(1)=5$ then at $x=1$ function f is
[A] increasing
[B] decreasing
[C] discontinuous
[D] not derivable
[5] If f is continuous on an interval I then
(A] f is uniformly continuous on I
[B] f is not necessarily uniformly contimuous on I
[C] f may have some points of discontinuities in I
[D] none
Q: 2. State the Least Upper Bound property of R and prove that the field of rational numbers is not order complete.

Q: 2. Define Exponential Function. Also state and prove the addition formulae for exponential function.

Q: 3. State and prove the Bolzano-Weiestrass theorem for sets.
OR

Q: 3. Prove that derived set of a set is closed.
Q: 4. Let f and g be two functions defined on some neighbourhood of a such that $\lim _{x \rightarrow a} f(x)=l$ and $\lim _{x \rightarrow a} g(x)=m$. Prove that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{l}{m}$, if $m \neq 0$ 5

OR
Q: 4. Show that a function $f:[a, b] \rightarrow \Re$ is continuous at point c of $[\mathrm{a}, \mathrm{b}]$ iff

$$
\lim _{n \rightarrow \infty} c_{n}=c \Longrightarrow \lim _{n \rightarrow \infty} f\left(c_{n}\right)=f(c)
$$

Q: 5. If $f^{\prime}(c)<0$, then prove that f is a monotonic decreasing function at point $x=c$.

OR

Q: 5. Show that $\log (1+x)$ lies between $x-\frac{x^{2}}{2}$ and $x-\frac{x^{2}}{2(1+x)}, \forall x>0$

