

- Q: 3. Prove that derived set of a set is closed.
- **Q: 4.** Let f and g be two functions defined on some neighbourhood of a such that $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$. Prove that $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{m}$, if $m \neq 0$

OR

Q: 4. Show that a function $f : [a, b] \to \Re$ is continuous at point c of [a,b] iff

$$\lim_{n \to \infty} c_n = c \Longrightarrow \lim_{n \to \infty} f(c_n) = f(c)$$

Q: 5. If f'(c) < 0, then prove that f is a monotonic decreasing function at point x = c.

OR

Q: 5. Show that $\log(1+x)$ lies between $x - \frac{x^2}{2}$ and $x - \frac{x^2}{2(1+x)}$, $\forall x > 0$

5

5

5

Y

Page 2 of 2

5