Vitthalbhai Patel \& Rajratna P.T.P.SCIENCE COLLEGE VALLABH VIDYANAGAR
 B.Sc. (Semester - 6)
 Subject: Physics
 Course: US06CPHYO1 (Quantum Mechanics)
 Internal Examination

Date: 05/03/2019
Time: 10:00 a.m. to 12:00 Noon
Tuesday
Total Marks: 50
N.B: (i) All the symbol have their usual meanings
(ii) Figures at the right side of questions indicate full marks

Q-1 Multiple Choice Questions (Attempt All)

(1) The concept of matter wave was suggested by \qquad
(a) Schrodinger
(b) Laplace
(c) Heisenberg
(d) de Broglie
(2) The total probability of finding the particle in space must be
(a) Unity
(b) zero
(c) Double
(d) infinity

(3) The limit of a region-II for a square well potential is \qquad
(a) $-\alpha<x<0$
(b) $-a<x<a$
(c) $a<x<\alpha$
(d) $-\alpha<x<-a$
(4) For non-localized states of the square well potential \qquad
(a) $E=\alpha$
(b) $E=0$
(c) $E>0$
(d) $E<0$
(5) If A is an operator and A^{+}is an adjoint operator of A then $\left(A^{+}\right)^{+}=$
(a) A^{*}
(b) A
(c) A^{+}
(d) 1
(6) If $\delta_{m, n}$ is Kronecker delta function then $\delta_{m, n}=1$ when \qquad
(a) $m>n$
(b) $m=n$
(c) $m \neq n$
(d) $m<n$
(7) Hamiltonian operator for simple harmonic oscillator is $\mathrm{H}=$ \qquad
(a) $\frac{p^{2}}{2 m}$
(b) $\frac{1}{2} k x^{2}$
(c) $\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}$
(d) $\frac{p^{2}}{2 m}+k x^{2}$
(8). Energy eigen value of an isotropic oscillator is given by $E=$ \qquad
(a) Kv
(b) $\hbar \omega$
(c) $n \hbar v$
(d) $\left(n+\frac{3}{2}\right) \hbar \omega$

Q-2 Short Questions (Attempt any Five)
(1) State the Heisenberg's uncertainty principle
(2) Define group velocity of the wave packet
(3) What is square well potential?
(4) State the physical significance of time independent Schrodinger equation
(5) Explain adjoint operator. Also define self adjoint operator.
(6) Define Dirac delta function and write its condition
(7) What is rigid rotator? State the expression for its energy level separation
(8) What is isotropic oscillator? Write down expressions for its energy
Q-3 Discuss the motion of a wave packet and derive the expression of group 08 velocity of wave packet
OR
Q-3 Derive the one-dimensional Schrodinger equation for a free particle 08
Q-4 Explain the motion of a particle in a square well potential for bound state 08 ($E<0$) and find the admissible solutions
OR
Q-4 Using the admissible solutions find the expression of energy eigen values 08 and energy eigen functions for a particle in a square well
Q-5 Derive the momentum eigen functions and make it normalized by Box 08 normalization
OR
Q-5 Prove that the product of uncertainty in observables is of the order of 08commutator
Q-6 Derive the dimension less Schrodinger equation for simple harmonic 08 oscillator
OR
Q-6 Derive the radial equation for motion of a particle in central potential 08

