V.P. \& R.P.T.P. Science College,V.V.Nagar

Internal Test: 2018-19
Subject: Mathematics US06CMTH05 Max. Marks: 50 Graph Theory
Date: : 1/03/2019
Timing: 10:00 am - 12:00 Noon,
Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q:1. Answer the following by choosing correct answers from given choices.
[1] The maximum number of edges in a simple graph with 5 vertices and 2 components is
[A] 3
[B] 4
[C] 5
[D] 6
[2] If terminal vertices in a walk are not same then it is called
[A] an open walk
[B] closed walk
[C] null graph
[D] none
[3] A minimally connected graph is
[A] a tree
[B] a circuit
[C] an Euler graph
[D] none
[4] An operation of vertex deletion on a graph removes corresponding
[A] edges only
[B] vertices only
[C] vertex and edges both
[D] none
[5] A spanning tree in a graph G must contain all the
[A] vertices of G
[B] edges of G
[C] circuits of G
[D] paths of G
[6] If rank of a matrix is 9 and its nullity is 5 then the number of its edges is \qquad
[A] 4
[B] 5
[C] 9
[D] 14
[7] The number of faces in a simple connected planar graph with 8 edges and 6 vertices is
[A] 2
[B] 4
[C] 6
[D] 8
[8] If G_{1} and G_{2} are isomorphic and rank of G_{2} is 5 then the rank of G_{1} is
[A] 25
[B] 5
[C] 10
[D] none

Q: 2. Answer any FIVE of the following.
[1] What is graph? Explain it with cxample.
[2] Define (i) Path (ii) Closed walk
[3] Explain Union of two graphs with an example.

[4] Explain Arbitrarily Traceable Graphs with an example.
[5] Prove that the edge connectivity of a graph G can not exceed the degree of a vertex with the smallest degree in G.
[6] Describe network flows
[7] Find geometric dual of the following graph

[8] Discuss Kurtowski's First graph.
Q: 3 [A] Prove that a simple graph with n vertices and k-components can have at most $\frac{(n-k)(n-k+1)}{2}$ cdges.
[B] If a graph (connected or disconnected) has exactly two vertices of odd degree then prove that there must be a path joining these two vertices.

OR
Q: 3 [A] Explain Isomorphism between two graphs.. Also examine whether following pairs of graphs are isomorphic or not.

[1]

[2]

$$
\text { Page } 2 \text { of } 3
$$

[B] Discuss Konigsberg bridge problem

OR

Q: 4 [A] Prove that every connected graph G is an Euler graph iff it can be decomposed into circuits.
[B] If in a graph G there is one and only one path between every pair of vertices then prove that G is a tree.

Q: 5 [A] Prove that every connected graph has atleast one spanning tree.
[B] Describe a method to find all spanning tree of a graph.

OR

Q: 5 [A] Prove that every cut-set in a connected graph G must contain atleast one branch of every spanning tree.
[B] Prove that every circuit has an even number of edges in common with any cut-set

Q: 6 [A] Using geometric arguments prove that $K_{3,3}$ is non-planar.
[B] For a simple connected planar graph with n-vertices, e-cdges $(e>2)$ and f-regions prove the following.
(i) $e \geqslant \frac{3}{2} f$
(ii) $e \leqslant 3 n-6$

OR
Q: $6[A]$ Give an example to show that two isomorphic graphs may not have isomorphic duals.
[B] Explain Geometric dual with an example

