A.T.P. Science A.T.P. Science College A.T.P. Science College College

V.P. & R.P.T.P. Science College, V.V.Nagar

Internal Test: 2018-19 US06CMTH03

Max. Marks : 50

Date: 08/03/2019

Subject : Mathematics

Topology

Timing: 10:00 am - 12:00 Noon

Instruction : The symbols used in the paper have their usual meaning, unless specified.

8 Q: 1. Answer the following by choosing correct answers from given choices. [1] In a topological space (X, \mathcal{T}) , a neighbourhood of a point is [A] \mathcal{T} -open [B] \mathcal{T} -closed [C] either open or closed [D] none [2] Any topology on a non-empty set is _____ the indiscrete topology on that set. [A] coarser than [B] finer than [C] non-comparable [D] none [3] In $(\mathcal{R}, \mathcal{U})$ which of the following is not closed [C] (1,2) [D] [1.2] $[A] \emptyset$ $[B] \mathcal{R}$ [4] If A is a dense subset of a topological space (X, \mathcal{T}) then [D] none [B] A = X[C] $A^{-} = X$ [A] A' = X[5] If there is a proper subset of a topological space (X, \mathcal{T}) which is open as well as closed then (X, \mathcal{T}) is a [B] connected space [A] compact space [C] disconnected space [D] none [6] In its relativised topology, the subset \dots of R is disconnected. [B] [0, 1] $[C] (0,1) \cup (1,2)$ $[D] (0,1) \cup [1,2)$ [A] (0, 1)[7] If every open cover of a topological space has a finite subcover then it is [C] a Regular Space [A] Compact [B] Unbounded [D] none [8] In a T_1 space the complement of every singleton set is [A] closed [B] open [C] closed and open both [D] neither open not closed Answer any FIVE of the following. 10 Q: 2. [1] Show that the sets \mathbb{R} and \emptyset are \mathcal{U} -open [2] Define (i) Topological Space (ii) Usual Topology of \mathbb{R} [3] Find the sets of cluster points of (1, 2) in usual topology and discrete topology of \mathbb{R} [4] Define (i) Closure of a set (ii) Interior Point [5] Prove that indiscrete space is connected Page 1 of 2

- [6] For $X = \{a, b, c\}$ consider the topology $\mathcal{T} = \{X, \emptyset, \{a, b\}, \{c\}\}$. Is (X, T) connected?
- [7] Is every discrete space a T_1 space also? Why?
- [8] Prove that every metric space is a Hausdorff space
- **Q: 3** [A] Show that usual topology of \mathbb{R} possesses all the properties for becoming a topology for \mathbb{P}
 - [B] Consider the topology \mathcal{G} on \mathbb{R} where $G \subset \mathbb{R}$ is \mathcal{G} -open if $G = \emptyset$ or $G \neq \emptyset$ and for each $p \in G$ there is a set $H = \{x \in \mathbb{R} | a \leq x < b\}$ for some a < b such that $p \in H \subset G$. Prove that \mathcal{G} is finer than usual topology of \mathbb{R}

OR

- **Q: 3** [A] Define Closed Set. Also if (X, \mathcal{T}) is a topological space and $F_1, F_2, ..., F_n$ are \mathcal{T} -closed subsets of X then prove that $\bigcup \{F_i \mid i \in J_n\}$ is a \mathcal{T} -closed set
 - **[B]** Are closed intervals of \mathbb{R} , \mathcal{U} -closed? where \mathcal{U} is the usual topology for \mathbb{R}
- **Q:** 4 [A] Let (X, \mathcal{T}) be a topological space and A be a subset of X. Prove that $A \cup A'$ is \mathcal{T} -closed
 - [B] Find the sets of cluster points of \mathcal{R} and $\{\frac{1}{n}/n \in J^+\}$ subsets of \mathbb{R} relative to \mathcal{U} -topology and \mathcal{I} -topology

OR

- **Q:** 4 [A] Let (X, \mathcal{T}) and (Y, Ψ) be topological spaces and f be a mapping from X into Y. Prove that if $f(A^-) \subset f(A)^-$ for $A \subset X$, then the inverse image of f of every Ψ -closed set is \mathcal{T} -closed set.
 - [B] Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Then prove that $A^- = A \cup A'$.
- **Q: 5 [A]** Show that a relative topology satisfies all the conditions for becoming a topological space
 - [B] Prove that the space (R, \mathcal{U}) is not compact and hence prove that no open interval is compact in its relativized \mathcal{U} topology.

OR

Q: 5 [A] Assuming that connectedness is a topological property prove that (R, \mathcal{U}) and (R, \mathcal{G}) are not homeomorphic where \mathcal{U} is usual topology for R and \mathcal{G} is defined as follows $G \in \mathcal{G}$ if either G empty or it is a nonempty subset of R such that for every

 $p \in G$ there is some $H = \{x \in R | a \leq x < b\}$ for a < b such that $p \in H \subset G$.

- [B] If (X, \mathcal{T}) is compact and Y is a \mathcal{T} -closed subset of X, then prove that (Y, \mathcal{T}_Y) is also compact.
- Q: 6. State and prove the Heine-Borel theorem.

OR

- **Q:** 6 [A] Prove that every compact Hausdorff space is a T_3 -space.
 - [B] If (X, \mathcal{T}) is a compact space, and if f is a $\mathcal{T} \psi$ continuous mapping of X into R, then prove that f is bounded.

5

3

5 3

5

3

5

3

5

3

5

3

8

5

3

Page 2 of 2