V.P.\& R.P.T.P.Science College, Vallabh Vidyanagar.
B.Sc. (Semester - VI) Internal Test

US06CMTH02 (Complex Analysis)
Date. 6/3/2019 ; Wednesday 10.00 a.m. to 12.00 noon Maximum Marks: 50
Que. 1 Fill in the blanks.
(1) $f(z)=\left(x^{2}-y^{2}-2 y\right)+i(2 x-2 x y)$ can be expressed as $f(z)=$. \qquad
(a) $\bar{z}^{2}+2 z$
(b) $\bar{z}^{2}+i z$
(c) $\bar{z}^{2}-2 i z$
(d) $\bar{z}^{2}+2 i z$
(2) Domain of $f(z)=z+\frac{1}{z}$ is . \qquad
(a) $\mathbb{C}-\{0\}(b)$
$\mathbb{C}-\{i\}$
(c)
$\mathbb{C}-\{ \pm 1\}(\mathrm{d})$
$\mathbb{C}-\{ \pm 1\}$
(3) If $f(z)=2 x+i y^{2} x$ then f is differentiable at \qquad

(a) 2
(b) 1
(c) 0
(d) none of these
(4) $f(z)=\frac{z^{3}+i}{\left(z^{2}-3 z+2\right)}$ is analytic in \qquad
(a) $\{ \pm \sqrt{1}, \pm 2\}$
(b) $\mathbb{C}-\{1$
$2\}$ (c) $\mathbb{C}-\{3, \pm 2\}$
(d) $\{1,2\}$
(5) e^{z} is periodic function with period \qquad , $n \in \mathbb{Z}$
(a) $n \pi i$
(b) $2 n \pi$
(c) $2 n \pi i$
(d) $(2 n+1) \pi i$
(6) $\cos x \cosh y-i \sin x \sinh y=$ \qquad
(a) $\cos z$
(b) $\sin z$
(c) $\sinh z$
(d) cosh
(7) Image of $y>1$ under the transformation $w=(1-i) z$ is \qquad
(a) $u+v<2$
(b) $v+u>2$
(c) $u-v>2$
(d) $u-v<2$
(8) Fixed point of $w=\frac{6 z-9}{z}$ are \qquad
(a) 0
(b) i
(c) 2
(d) 3

Que. 2 Answer the following (Any Five)
(1) Prove that limit of function is unique, if it exist.
(2) By using definition, prove that $\frac{d}{d z}\left(z^{-1}\right)=-\frac{1}{z^{2}}$.
(3) Verify that $f(z)=\cosh x \cos y+i \sinh x \sin y$ is entire or not.
(4) Find a harmonic conjugate $v(x, y)$ for harmonic function $u(x, y)=2 x(1-y)$.
(5) Find all values of z such that $e^{z}=-1-\sqrt{3} i$.
(6) Prove that $|\sinh x| \leq|\cosh z| \leq \cosh x$.
(7) Prove that $w=A z$, where A is non-zero complex constant, $z \neq 0$, gives an expansion or contraction by $|A|$ or rotation through argA about origin.
(8) Find the image of $0<x<1,0<y<1$ under the transformation $w=i z$. Also sketch the region .

Que. 3 (a) By using definition of limit prove that $\lim _{z \rightarrow 2 i}\left(2 x+i y^{2}\right)=4 i$.
(b) State and prove chain rule for differentiating composite functions.

OR

Que. 3 (c) Give an example of function such that its real and imaginary component have continuous partial derivative of all order at a point but the function is not differentiable at that point. Verify it.
(d) If $\lim _{z \rightarrow z_{0}} f(z)=w_{0} ; \lim _{z \rightarrow z_{0}} g(z)=w_{1}$. Then prove that $\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{w_{0}}{w_{1}}$ if $w_{0} \neq 0$

Que. 4 (a) Let $f(z)=u(x, y)+i v(x, y)$ and $\mathrm{f}^{\prime}(z)$ exist at $z_{0}=x_{0}+i y_{0}$. Prove that the first order partial derivatives of u and v must exist at (x_{0}, y_{0}) and they satisfies the Cauchy-Reimann equations $u_{x}=v_{y} ; u_{y}=-v_{x}$ at $\left(x_{0}, y_{0}\right)$.Also prove that $f^{\prime}(z)=u_{x}+i v_{x}$ where u_{x} and v_{x} are evaluated at $\left(x_{0}, y_{0}\right)$.Does the converse of above result holds? Verify it.

OR

Que. 4 (b) State and prove sufficient conditions for differentiability of $f(z)$.
(c) Prove that $f^{\prime}(z)$ does not exist at any point for $f(z)=2 x+i x y^{2}$

Que. 5 (a) Prove that $\left(e^{z}\right)^{n}=e^{n z} \quad \forall n \in \mathbb{Z}$.
(b) Solve the equation $\cos w=\sqrt{2}$.

OR

Que. 5 (c) Prove that $\cos z_{1}-\cos z_{2}=-2 \sin \left(\frac{z_{1}+z_{2}}{2}\right) \sin \left(\frac{z_{1}-z_{2}}{2}\right)$.

(d) Solve the equation $\cosh z=1 / 2$

Que. 6 (a) Discuss the image of $w=(i+1) z+2$. Hence sketch the rectangle $1 \leq x \leq 2,1 \leq y \leq 4$ and its image.
(b) Find the image of semi infinite strip $x>0,0<y<1$ under the transformation $w=i / z$. Also sketch the strip and its image.

OR

Que. 6 (c) Find linear fractional transformation that maps the points $z_{1}=-i, z_{2}=0, z_{3}=i$ onto $w_{1}=-1, w_{2}=i, w_{3}=1$ respectively
(d) Prove that all linear fractional transformation that maps the upper half plane $\operatorname{Im} z>0$ onto the open disk $|w|<1$ and the boundary $\operatorname{Im} z=0$ on to the boundary of $|w|=1$ is given by $w=e^{i \alpha}\left[\frac{z-z_{0}}{z-\overline{z_{0}}}\right],\left(\operatorname{Im} z_{0}>0\right)$.

