V.P. \& R.P.T.P. Science College,V.V.Nagar

Subject: Mathematics US06CMTH01 Max. Marks: 50
Real Analysis - III
Date: 05/03/2019
Timing: 10:00 am - 12:00 Noon
Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.
[1] In usual notations, the Schlömilch-Röche form of remainder in Maclaurin's theorem is
[A] $\frac{x^{n}(1-\theta)^{n-p}}{p(n-1)!} f^{(n)}(\theta x)$
[B] $\frac{x^{n}(1+\theta)^{n-p}}{p(n-1)!} f^{(n)}(\theta x)$
$[\mathrm{C}] \frac{x^{(n-1)}(1-\theta)^{n-p}}{p(n-1)!} f^{(n)}(\theta x)$
[D] $\frac{x^{n-1}(1-\theta)^{n-p}}{p(n-1)!} f^{(n)}(\theta x)$
[2] If a function f defined on $[a, b]$ is
(i) continuous on $[a, b]$ (ii) differentiable on (a, b) and (iii) $f(a)=f(b)$ then the tangent at atleast one point on the curve $y=f(x)$ is
[A] parallel to the X-axis
[B] perpendicular to the X -axis
[C] parallel to the Y-axis
[D] does not exist
[3] A derivable function $f(x)$ has a maximum at c if while x passes through c, the derivative f^{\prime}
[A] remains positive
[B] remains negative
[C] changes its sign from negative to positive
[D] changes its sign from positive to negative
[4] If f has a minima at c then there is some $\delta>0$ such that $\forall x \in(c-\delta, c+\delta), x \neq c$
[A] $f(c)<f(x)$
[B] $f^{\prime}(c)<f^{\prime}(x)$
[C] $f(c)>f(x)$
[D] $f^{\prime}(c)>f^{\prime}(x)$
[5] If P is a partition of $[a, b]$ then
[A] $a \in P$ but $b \notin P$
[B] $a \notin P$ but $b \in P$
$[\mathrm{C}] a \notin P$ and $b \notin P$
[D] $a \in P$ and $b \in P$
[6] For every bounded function f defined on $[a, b]$
[A] $\int_{\bar{a}}^{b} f . d x \leqslant \int_{a}^{\bar{b}} f . d x$
$[\mathrm{B}] \int_{\bar{a}}^{b} f . d x \geqslant \int_{a}^{\bar{b}} f . d x$
[C] $\int_{\bar{a}}^{b} f . d x=\int_{a}^{\bar{b}} f . d x$
[D] none
[7] A continuous function over a closed interval $[a, b]$ is always
[A] an increasing function
[B] a decreasing function
[C] a constant function
[D] an integrable function
[8] An increasing function over a closed interval [a, b]
[A] is always an integrable function
[B] is always a differentiable function
[C] cannot be always an integrable function
[D] none
Q: 2. Answer any FIVE of the following.
[1] Explain the algebraic meaning of Rolle's theorem
[2] State Cauchy's Mean Value theorem

[3] Show that, $f(x)=x^{2}-4 x-5$ has a minimum at 2
[4] Show that $f(x)=5 x+8$ cannot have a stationary point
[5] Write a common refinement of the partitions $P_{1}=\{2,3,4,6,8,12\}$ and $P_{2}=\{2,3,9,10,12\}$ of $[2,12]$.
[6] Can two partitions of $[a, b]$ be disjoint? Justify.
[7] Is an integrable function over $[a, b]$ necessarily continuous on $[a, b]$? Why?
[8] Is $f(x)=x$ an integrable function over $[0,1]$? Justify.
Q: 3 [A] State and prove Lagrange's Mean Value theorem
[B] If a function f is continuous on $[a, b]$, derivable on (a, b) and $f^{\prime}(x)>0, \forall x \in(a, b)$ then prove that f is strictly incerasing function on $[a, b]$

OR

Q: 3 [A] State and prove Taylor's theorem.
[B] Examine the validity of the hypothesis and the conclusion of Lagrange's Mean Value theorem for the function $f(x)=2 x^{2}-7 x+10$ on $[2,5]$

Q: 4 [A] If c is an interior point of the domain $[a, b]$ of a function f and is such that
(i) $f^{\prime}(c)=f^{\prime \prime}(c)=f^{\prime \prime \prime}(c)=\ldots=f^{(n-1)}(c)=0$ and
(ii) $f^{(n)}$ exists and is non-zero
then show that for n odd, $f(c)$ is not an extreme value, while for n even $f(c)$ is maximum or minimum according as $f^{(n)}$ is negative or positive.
[B] Prove that a conical tent of a given capacity will require the least amount of canvas when the height is $\sqrt{2}$ times the radius of the base.

Q: 4 [A] Examine the function $\sin x+\cos x$ for extreme values
[B] Show that $\sin x(1+\cos x)$ is maximum at $x=\frac{\pi}{3}$

Q: 5 [A] Prove that if f_{1} and f_{2} are bounded and integrable functions on $[a, b]$, then their product $f_{1} f_{2}$ is also bounded and integrable on $[a, b]$
[B] Show that the square of an integrable function on $[a, b]$ is also integrable on $[a, b]$

OR
Q: 5 [A] Prove that a necessary and sufficient condition for the integrability of a bounded function f is that to every $\epsilon>0$ there corresponds $\delta>0$ such that for every partition P of $[a, b]$ with $\mu(P)<\delta$,

$$
U(P, f)-L(P, f)<\epsilon
$$

[B] Show that x^{2} is integrable on any interval $[0, k]$
Q: 6 [A] If f_{1}, f_{2} are integrable on $[a, b]$ and c_{1} and c_{2} any two constants, then prove that $c_{1} f_{1}+c_{2} f_{2}$ is integrable and

$$
\int_{a}^{b}\left(c_{1} f_{1}+c_{2} f_{2}\right) \cdot d x=\int_{a}^{b} c_{1} f_{1} \cdot d x+\int_{a}^{b} c_{2} f_{2} \cdot d x
$$

[B] Prove that a bounded function f is integrable on $[a, b]$, if the set of points of discontinuity has only a finite number of limit points.
OR

Q: 6 [A] State and prove the Second Mean Value theorem of Integral Calculus
[B] If f is a non-negative continuous function on $[a, b]$ and $\int_{a}^{b} f . d x=0$ then prove that $f(x)=0, \forall x \in[a, b]$

