VP \& RPTP Science College-Vallabh Vidyanagar

BSc Examination [Semester: V] 2018

Subject: Physics Course: US05CPHY02
Physics
Monday, Date 01-10-2018
Time: 10.00 am to 12.00 pm
Total Marks: 50 INSTRUCTIONS:
1 Attempt all questions.
2 The symbols have their usual meaning
3 Figures to the right indicate full marks.
Q-1 Multiple Choice Questions: [Attempt all]
(i) The condition for orthogonality for curvilinear co-ordinates is
(a) $\frac{\partial r}{\partial u} \cdot \frac{\partial u}{\partial v}=0$
(b) $\frac{\partial u}{\partial r} \cdot \frac{\partial v}{\partial r}=0$
(c) $\frac{\partial r}{\partial u} \cdot \frac{\partial r}{\partial u}=0$
(d) $\frac{\partial r}{\partial u} \cdot \frac{\partial r}{\partial v}=0$
(ii) The matrix of order $n \times m$ is obtained from any matrix A of order $m \times n$, by interchanging its rows and columns is called \qquad _.
(a). Inverse of a Matrix
(b) Cofactor of a Matrix
(c) Traspose of a Matrix
(d) Adjoint of a Matrix
(iii) $\quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0$ is called
(a) Hermite differential equation
(b) Legendre's differential equation
(c) Bessel's differential equation
(d) None of these
(iv) The generating function for Bessel's function of the order n is
(a) $e^{\frac{x}{2}(t-1)}$
(b) e^{x}
(c) $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}$
(d) $e^{x\left(t-\frac{1}{t}\right)}$
(v) The diffusion equation or Fourier equation of heat flow is
(a) $\frac{\partial u}{\partial t}=h \nabla^{2} u$
(b) $\frac{\partial u}{\partial t}=h^{2} \nabla^{2} u$
(c) $\frac{\partial^{2} u}{\partial t^{2}}=h^{2} \nabla^{2} u$
(d) $\frac{\partial u}{\partial t}=h^{2} \nabla u$
(vi) Shift operator $E=$ \qquad .
(a) $\nabla+1$
(b) $\Delta-1$
(c) $\Delta+1$
(d) $\delta+1$
(vii) $\quad y=a x^{2}+b x+c$ is the equation of
(a) Parabola
(b) Ellipse
(c) Straight Line
(d) None of these
(viii) The backward difference operator ∇ defined as
(a) $\quad \nabla y_{i}=y_{i}-y_{i+1}$
(b) $\quad \nabla y_{i}=y_{i-1}-y_{i}$
(c) $\quad \nabla y_{i}=y_{i}-y_{i-1}$
(d) $\nabla y_{i}=y_{i+1}-y_{i}$
(1) Write Laplacian in terms of orthogonal curvilinear co-ordinates.
(2) Define Unit matrix and Null Matrix.
(3) For Bessel's function $J_{n}(x)$, prove that $x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)$.
(4) Write Hermite differential equation.
(5) Write sine series for $f(x)$, when $0 \leq x \leq \pi$.
(6) Write telegraphy equation.
(7) Convert $y=a e^{b x}$ in to equivalent equation of a straight line.
(8) Define (i) interpolation and (ii) extrapolation.

Q-3 (a) Derive expression of gradient in terms of orthogonal curvilinear system
(b) If $u=x+4, v=y-5, w=z+3$, show that u, v and w are orthogonal.

Q-3 (a) Prove that the product of sets of two triads of mutually orthogonal vectors are 6 reciprocal to each other.
(b) Write expression for $\nabla \varnothing$ in terms of curvilinear co-ordinate system.

Q-4 Derive the series solution of Legendre differential equation in the form of 8 descending power of x.

OR
Q-4 Derive the series solution of Bessel's differential equation in the form of ascending power of x.

Q-5 Define Fourier series and Derive the expression of Fourier series for a periodic function $f(x)$ in the interval $(-\pi, \pi)$.

OR
Q-5 Obtain Fourier series for $f(x)=x \cdot \sin x$ in the interval $-\pi<x<\pi$. show that 8 $\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\cdots$

Q-6 Derive Newton's backward difference interpolation formula and evaluate $f(48)$ from the following table of values.

x	10	20	30	40	50
$y=f(x)$	46	66	81	93	101

Q-6 Using Simpson's $1 / 3$ rule find the approximate value of $I=\int_{0}^{\pi} \cos x d x$ by dividing the range of integration into ten equal parts. What is the analytical value of $I=\int_{0}^{\pi} \cos x d x$

