V.P.\& R.P.T.P.Science College,Vallabh Vidyanagar.
B.Sc.(Semester - V) Internal Test

US05CMTH05 (Number Theory)
Date. 6/10/2018 ; Saturday
10.00 a.m. to 12.00 noon

Maximum Marks: 50

Que. 1 Fill in the blanks.
(1) $(a, 0)=$ \qquad , $\forall a \in \mathbb{Z}$
(a) $-a$
(b)
(c) a
(d) 0
(2) $(525,231)=$ \qquad
(a) 10 (b)
31 (c)
21 (d)
7
(3) If a is square number then $S(a)$ is \qquad
(4)
(d) 0
(a) even (b)
odd
(c) prime
(a) 100
is Fermat's n
(b) 116
(c) 327
(d) 257
(5) 765432 is not divisible by
(a) 7
(b) 3
(c) 4
(d) 9
(6) $\phi(m)+S(m)=m T(m)$ iff m is \qquad
(a) not prime
(b) odd
(c) even
(d) prime
(7) $\phi(m) \leq$
(a) $\mathrm{m}-1$
(b) m
(c) $\mathrm{m}+1$
(d) $m-2$
(8) $2 x+7 y \equiv 5(\bmod 12)$ has only \qquad solutions.
(a) 1 (b) 2
(c) 12
(d) 5

Que. 2 Answer the following (Any Five)
(1) Discuss Euclidean algorithm for finding gcd of two numbers
(2) Prove that $(a+b)[a, b]=b[a, a+b], \forall a, b>0$.
(3) Prove that two distinct Fermat's numbers are relatively prime.
(4) Prove that $u_{n+1}^{2}=u_{n}^{2}+3 u_{n-1}^{2}+2\left[u_{n-2}^{2}+u_{n-3}^{2}+\cdots+u_{1}\right]$.
(5) Find positive integer solution of $7 x+19 y=213$.
(6) Find all relatively prime solution of $x^{2}+y^{2}=z^{2}$ with $0<z<30$.
(7) Solve the equation $12 x+15 \equiv 0(\bmod 45)$.
(8) If $(a, p)=1, \mathrm{p}$ is prime, then prove that $a^{p-1} \equiv 1(\bmod p)$.

Que. 3 (a) Let g be a positive integer greater than 1 then prove that every positive integer a can can be written uniquely in the form $a=c_{n} g^{n}+c_{n-1} g^{n-1}+\ldots . .+c_{1} g+c_{0}$, where $n \geq 0, c_{i} \in \mathbb{Z}, 0 \leq c_{i}<g, c_{n} \neq 0$.
(b) Prove that $(a, b)|c|=(a c, b c), \forall c \neq 0$.

OR
Que. 3 (c) If P_{n} is $n^{\text {th }}$ prime number then prove that $P_{n}<2^{2 n}, \forall n \in \mathbb{N}$.
(d) Prove that $(a, b)=1$ iff $\exists x, y \in \mathbb{Z}$ such that $x a+y b=1$.

Que. 4 (a) Prove that every prime factor of $F_{n}(n>2)$ is of the form $2^{n+2} t+1$, for some integer t.
(b) If $2^{m}-1$ is prime then prove that m is also prime .Does the converse hold ? verify it .

Que. 4 (c) Prove that $S(a)<a \sqrt{a}, \forall a>2$.
(d) Prove that $\left(u_{m}, u_{n}\right)=u_{(m, n)}$. Hence Prove that u_{m} / u_{n} iff m / n.

Que. 5 (a) Prove that a general integer solution of $x^{2}+y^{2}+z^{2}=w^{2},(x, y, z, w)=1$ is given by $x=\left(a^{2}-b^{2}+c^{2}-d^{2}\right), y=2 a b-2 c d, z=2 a d+2 b c, w=a^{2}+b^{2}+c^{2}+d^{2}$.
(b) Prove that a positive integer n is divided by 9 iff the sum of its digits is divisible by 9 .

OR

Que. 5 (c) Prove that the equation $x^{4}+y^{4}=z^{2}$ has no solution with nonzero positive integers x, y, z. Hence prove that $x^{4}-4 y^{4}=z^{2}$ has no nonzero positive integer solution.
(d) If $(a, b)=d$, then prove that general solution of $a x+b y=c$ can be written as $x=x_{0}+\frac{b}{d} t$; $y=y_{0}-\frac{a}{d} t$, where $t \in \mathbb{Z}$ and $x=x_{0}, y=y_{0}$ is a particular solution of $a x+b y=c$

Que. 6 (a) Prove that m is prime iff $\phi(m)+S(m)=m T(m)$.
(b) State and prove Sun-Tsu theorem.

OR
Que. 6 (c) Prove that Euler's function is multiplicative function and hence find $\phi(1708)$.
(d) Solve $6 x+15 y \equiv 9(\bmod 18)$.

