V.P.& R.P.T.P.Science College.Vallabh Vidyanagar. B.Sc. (Semester - V) Internal Test US05CMTH04 (Abstract Algebra - 1) /2018 ; Friday 10.00 a.m. to 12.00 noon Maximum Ma

Date. 5/10/2018 ; Friday Maximum Marks: 50 Que.1 Fill in the blanks. 8 (1) In group (Z_7^*, \cdot) , $\bar{6}^{-1} = \dots$ (a) $\bar{6}$ (b) $\bar{3}$ (c) $\bar{4}$ (d)2 (2) Let G be a group , an element $a \in G$ is called idempotent if $a^2 = \dots$ (a) 0 (b) a (c) (d)е (3) is generator of group Z_5^* . (a) $\bar{3}$ (b) $\bar{1}$ (c) $\bar{4}$ (d) $\bar{5}$ (4) Cyclic group of order 13 has only generator . (a) 13 (b) 11 (c) 12 (d) 2 (5) Define $f: R^* \to R^*$ by $f(x) = x^2$ then Ker $f = \dots$ (a) 0 (b) ± 1 (c) 1 (d) $\{\pm 1\}$ (6) is quotient group of Z_{12} . (a) Z_2 (b) Z_8 (c) Z_{10} (d) Z_9 (7) If $f: A \to B$ is one-one homomorphism but not onto then $A \simeq \dots$ (a) f(AB) (b) f(B) (c) f(A) (d) B (8) Ker $\varepsilon = \dots$ (a) A_n (b) e (c) ± 1 (d) S_n

Que.2 Answer the following (Any Five)

- (1) Prove that fourth root of unity forms a group.
- (2) Prove that the product of two subgroup of group is a subgroup if they commute with each other.
- (3) Find all right cosets of $-3\mathbb{Z}$ in \mathbb{Z} .
- (4) Prove that an infinite cyclic group has exactly two generators.
- (5) Prove that the mapping $\theta : \mathbb{R} \to \mathbb{R}^+$ defined by $\theta(a) = 2^a$ is onto isomorphism.
- (6) Let G be a group and $x \in G$ be a fixed element. Then prove that the mapping $i_x : G \to G$ defined by $i_x(a) = xax^{-1}$ is an automorphism of G.

(7) Prove that
$$O(A_n) = \frac{\pi}{2}$$
.
(8) If $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$; $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}$ then find $\varepsilon(\tau\sigma)$, $\varepsilon(\sigma\tau)$.

- Que.3 (a) Is (G, \cdot) forms a Group ? Is it Commutative ? Verify it , where G is set of all 2×2 non singular real matrices .
 - (b) Let H be a finite subset of group G such that $ab \in H$ whenever $a, b \in H$. Then prove that H is a subgroup of G.

OR

- Que.3 (c) Let H and K be finite subgroups of group G such that HK is a subgroup of G.Then prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}.$
 - (d) Prove that (G, *) is a group ,where G is a set of all subsets of \mathbb{R} and operation * defined as $A * B = (A B) \cup (B A) \quad \forall A, B \in G$.

10

5

3

5

3

- Que.4 (a) Prove that any subgroup of a cyclic group is also cyclic group. Also prove that every subgroup of an infinite cyclic group is infinite cyclic group.
 - (b) Let G be a finite cyclic group of order n. Then prove that G has unique subgroup of order d for every divisor d of n.

OR

- Que.4 (c) Let G be a finite cyclic group of order n, then prove that G has $\phi(n)$ generators.
 - (d) Let H be a subgroup of group G.Then prove that G is the union of ell right cosets of H in G. Also prove that two distinct right cosets of H in G are disjoint.
- Que.5 (a) State and prove First and Third isomorphism theorem .

OR

- Que.5 (b) Let G = (a) be a finite cyclic group of order n. Then prove that the mapping $\theta: G \to G$ defined by $\theta(a) = a^m$ is an automorphism of G iff m is relatively prime to n.
 - (c) Prove that $\mathbb{Z}_n \simeq n^{th}$ root of unity.
- Que.6 (a) If G is a direct product of subgroups H and K ,then prove that G is isomorphic to the external direct product of H and K .
 - (b) Let $G = H \times K$ be external direct product of H and K, then prove that $G/K' \simeq H$, where $K' = \{(e_H, k)/k \in K\}$.

OR

- Que.6 (c) Prove that G is direct product of subgroups H and K iff (i) every $x \in G$ can be uniquely expressed as x = hk, $h \in H$, $k \in K$ (ii) hk = kh, $h \in H$, $k \in K$.
 - (d) Prove that every permutation can be expressed as a product of disjoint cycles .

5

3

5

3

8

5

4

5

3

4