V.P. & R.P.T.P. Science College, V.V.Nagar

Internal Test: 2018-19 US05CMTH03

Max. Marks: 50

Date: 03/10/2017

Metric Spaces

Subject : Mathematics

Timing: 10.00 am - 12.00 am

8 Q: 1. Answer the following by choosing correct answers from given choices. [1] Every Cauchy sequence is [D] none [A] convergent [B] is not always convergent [C] divergent [2] Every function defined on R_d is continuous at [B] 0 and 1 only [A] all real numbers [C] rational numbers only [D] irrational numbers only [3] In the metric space M = [0, 1] with usual metric , $B[\frac{1}{4}, 1] = [A] [0, 1]$ [B] $[\frac{1}{4}, 1]$ [C] $[0, \frac{1}{4}]$ [D] (0, 1)[4] In a metric space (M, ρ) , its subsets M and ϕ are [A] open but not closed [B] closed but not open [C] open as well as closed [D] neither open nor closed [5] The subset _____ of R^1 is not complete [D] R [A] [1, 2][B](0,1)[C] [0, 2][6] Every singletone subset of _____ is open $[B] R^1$ $[C] R^2$ $[A] R_d$ [D] [0, 1], (with usual metric) [7] The range of a continuous function f defined on [1, 2] is [A] unbounded [B] compact [C] disconnected [D] none [8] Every finite subset of a metric space is [A] unbounded [B] compact [C] dense [D] none 10 Answer any FIVE of the following. Q: 2. [1] For $P(x_1, y_1)$ and $Q(x_2, y_2)$ in \mathbb{R}^2 , define $\sigma : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ by $\sigma(P,Q) = |x_1 - x_2| + |y_1 - y_2|$, show that σ is a metric on \mathbb{R}^2

- [2] Let $d : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $d(x, y) = \sin |x y|$. Check whether d is a metric or not.
- [3] For the discrete metric \mathbb{R}_d , find (1) B[a;2] (2) B[a;1/2]
- [4] Prove that in any metric space (M, ρ) , both M and ϕ are open sets.

Page 1 of 2

5

3

5

3

5

3

- [5] Show that every subset of \mathbb{R}_d is bounded
- [6] Define : (i) Totally bounded set (i) ϵ -dense set
- [7] Show that a finite subset of \mathbb{R}_d is compact.
- [8] Show that $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = x is uniformly continuous.
- Q: 3 [A] prove that a real valued function f is continuous at $a \in R$ iff whenever $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers converging to a then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges to f(a).
 - [B] Show that a sequence in a metric space cannot convergene to two distinct limits.

OR

Q: 3 [A] In usual notations prove that $\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$

- [B] Prove that a real valued function f is continuous at $a \in \mathbb{R}^1$ if and only if the inverse image under f of any open ball $B[f(a), \epsilon]$ about f(a) contains an open ball $B[a, \delta]$ about a
- Q: 4 [A] Prove that if (M, ρ) is a metric space then any open sphere in M is an open set.
 - [B] Let \mathcal{F} be any nonempty family of open subsets of a metric space M. Then $\bigcup_{G \in \mathcal{F}} G$ is also an open subset of M.

OR

Q: 4 [A]	Prove that Every open subset G of \mathbb{R} can be written $G = \bigcup I_n$, where I_1, I_2, I_3, \ldots are a finite number or a countable number of open intervals which are mutually disjoint.	5
[B]	Prove that $[0, 1]$ and $[a, b]$ are homeomorphic.	3
Q: 5 [A]	If the subset A of the metric space (M, ρ) is totally bounded, then prove that A is bounded.	5
[B]	Prove that subset A of \mathbb{R} is totally bounded <i>iff</i> A is bounded.	3
OR		
Q: 5.	Let (M, ρ) be a metric space. Then prove that a subset A of M is totally bounded <i>iff</i> every sequence of points of A contains a Cauchy subsequence.	8
Q: 6 [A]	If A is a closed subset of the compact metric space (M, ρ) , then prove that the metric space (A, ρ) is also compact.	5
[B]	Prove that if f is a continuous function from a compact metric space M_1 into a metric space M_2 then the range $f(M_1)$ of f is also compact.	3
OR		
Q: 6 [A]	Let f be a one-one, continuous function on a compact metric space (M_1, ρ_1) onto (M_2, ρ_2) . Then prove that f^{-1} is continuous and hence f is a homeo- morphism of M_1 onto M_2 .	5
[B]	If a real valued function f is continuous on a compact metric space M , then prove that f attains the maximum and the minimum values at some points	2
	of M	

Page 2 of 2