V.P. \& R.P.T.P. Science College,V.V.Nagar
 Internal Test: 2018-19

Subject: Mathematics
US05CMTH02
Max. Marks : 50
Real Analysis-II
Date: 01/10/2018
Timing: $10.00 \mathrm{am}-12.00 \mathrm{pm}$

Q: 1. Answer the following by choosing correct answers from given choices.
[1] The sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$, where $S_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)$
$[A]$ is convergent $[B]$ oscillates finitely $[C]$ oscillates infinitely $[D]$ is divergent
[2] Every convergent sequence is
[A] oscillating
[B] bounded
[C] unbounded
[D] none
[3] A positive term series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if and only if
[A] $p<1$
[B] $p>1$
[C] $p \leqslant 1$
[D] $p \geqslant 1$
[4] The series $\sum_{n=1}^{\infty} \frac{n+1}{n}$
[A] converges to 1
[B] converges to 2
[C] converges to 3
[D] none
[5] $\lim _{(x, y) \rightarrow(0,0)} \frac{x \sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=$
[A] 0
[B] 1
[C] 2
[D] 3
[6] $\lim _{x \rightarrow 1} \lim _{y \rightarrow-1} \frac{4 x^{3} y^{2}}{x^{2}+y^{2}}=$
[A] 1
[B] 2
[C] 3
[D] none
[7] The necessary condition for a function f to have an extreme value at $(2,4)$ is
[A] $f_{x}(2,4)=0, f_{y}(2,4) \neq 0$
[B] $f_{x}(2,4) \neq 0, f_{y}(2,4)=0$
$[C] f_{x}(2,4) \neq 0, f_{y}(2,4) \neq 0$
[D] $f_{x}(2,4)=0, f_{y}(2,4)=0$
[8] For a function f, if $f_{x}(a, b)<f_{y}(a, b)$ then at $(a, b), f$ has
$[A]$ no extreme value $[B]$ a minimum $[C]$ a maximum $[D]$ an extreme value
Q: 2. Answer any FIVE of the following.
[1] Define: (i) Bounded Sequence (ii) Convergence of a sequence
[2] Show that $\lim _{n \rightarrow \infty} \frac{3+2 \sqrt{n}}{\sqrt{n}}=2$
[3] If $\sum_{n=1}^{\infty} u_{n}=u$ and $\sum_{n=1}^{\infty} v_{n}=v$ then prove that $\sum_{n=1}^{\infty}\left(u_{n}-v_{n}\right)=u-v$
[4] Test $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{-1}}$ for convergence.
[5] Evaluate: $\lim _{(x, y) \rightarrow(3,1)} \frac{\tan ^{-1}(x y-3)}{\tan ^{-1}(2 x y-6)}$
[6] Evaluate: $\lim _{(x, y) \rightarrow(1,1)} \frac{e^{(x-y)}-1}{x-y}$

[7] Can a function $f(x, y)=x^{2}+5 x y+y^{2}$ have an extreme value at $(1,1)$? Why?
[8] State Maclaurin's theorem
Q: 3 [A] State and prove the Bolzano-Weierstarss theorem for sequence
[B] Show that the sequence $\left\{S_{n}\right\}$ where $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ cannot converge.

OR

Q: 3 [A] If a sequence of closed intervals $\left[a_{n}, b_{n}\right]$ is such that each member $\left[a_{n+1}, b_{n+1}\right]$ is contained in the preceeding one $\left[a_{n}, b_{n}\right]$ and $\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0$ then prove that there is one and only one point common to all the intervals of the sequence.
[B] If $\lim _{n \rightarrow \infty} a_{n}=a$ for a sequence $\left\{a_{n}\right\}$ such that $a_{n} \geqslant 0$ then show that $a \geqslant 0$

Q: 4 [A] State and prove the comparision test of first type.
[B] Show that a positive term series converges iff the sequence of its partial sums is bounded above.

OR
Q: 4 [A] State and prove Cauchy's general principle for convergence of a series.
[B] Show that the series $\frac{1}{(\log 2)^{p}}+\frac{1}{(\log 3)^{p}}+\cdots+\frac{1}{(\log n)^{p}}+\ldots$ diverges for $p>0$
Q: 5 [A] By using the definition of limit prove that: $\lim _{(x, y) \rightarrow(1,2)}\left(x^{2}+2 y\right)=5$
[B] Show that $\lim _{(x, y) \rightarrow(0,0)} x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=0$
OR
Q: 5. If $z=f(x, y)$ is a function of independent variables x, y and if x, y are changed to new independent variables u, v by the substitution $x=\phi(u, v) ; y=\psi(u, v)$, then express the derivatives of z with respect to x, y in terms of u, v and the derivatives of z with respect to u, v.

Q: 6 [A] State and prove Taylor's theorem
[B] show that $2 x^{4}-3 x^{2} y+y^{2}$ has neither a maximum nor a minimum at $(0,0)$.

OR

Q: 6 [A] Find the expansion of $\sin x \sin y$ about $(0,0)$ upto and including and the terms of fourth degree in (x, y). Also compare the result with that you get by multiplying the series for $\sin x$ and $\sin y$.
[B] A rectangular box open at the top is to have a volume of $32 \mathrm{~m}^{3}$. Find the dimensions of box so that the total surface area is minimum.

