V.P. \& R.P.T.P. Science College,V.V.Nagar Internal Test: 2018-19

Subject: Mathematics
US05CMTH01
Max. Marks : 50 Real Analysis-I
Date: 29/09/2018
Timing: $10.00 \mathrm{am}-12.00 \mathrm{pm}$

Q: 1. Answer the following by choosing correct answers from given choices.
[1] The smallest member of a set S, if exists, is
[A] the supremum of S
[B] the infimum of S
[C] not unique
[D] none
[2] The infimum of the set $-1,1,-1 \frac{1}{2}, 1 \frac{1}{2},-1 \frac{1}{3}, 1 \frac{1}{3}, \ldots$
[A] -1
[B] 0
[C] $-1 \frac{1}{2}$
[D] $\frac{1}{2}$
[3] The interior of the set of integers is
[A] N
[B] Q
$[C] R$
[D] ϕ
[4] If S_{1} and S_{2} are closed sets then $S_{1} \cup S_{2}$ is
[A] closed
[B] open
[C] Open as well as closed
[D] none
[5] If $\lim _{x \rightarrow a} f(x)$ exists but $f(a)$ does not exist then f posseses a discontinuity of [A] removable type [B] first type [C] second type [D] first type from left
[6] $\lim _{x \rightarrow 2-}[x]-x=$
[A] 0
[B] -1
[C] -2
[D] -3
[7] If f is uniformly continuous on an interval then on that interval it is
[A] continuous
[B] discontinuous
[C] differentiable
[D] not differentiable
[8] If $f^{\prime}(1)=5$ then at $x=1$ function f is
[A] increasing
$[B]$ decreasing
[C] discontinuous
[D] not derivable

Q: 2. Answer Any FIVE of the following.
[1] Find the Greatest and the smallest members of $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$ if they exist.
[2] Find the l.u.b and smallest member of $\left\{n^{2} / n \in N\right\}$ if they exist.
[3] Determine whether the interior of the set $[2,8] \cup(9,10) \cap N$ is open or not.
[4] Give an example of a set which is neither open nor closed.
[5] If [x] denotes the largest integer less than or equal to x, then discuss the continuity at $x=3$ for the function $f(x)=x-[x], \forall x \geqslant 0$,
[6] Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}$
[7] Prove that the function x^{2} is derivable on $[0,1]$.

[8] If f is derivabale at c and $f(c) \neq 0$ then the function $\frac{1}{f}$ is also derivable thereat, and $\left(\frac{1}{f}\right)^{\prime}=-\frac{f^{\prime}(c)}{\{f(c)\}^{2}}$
Q: 3 [A] State the Least Upper Bound property of R and prove that the field of rational numbers is not order complete.
[B] State and prove the addition formulae for exponential function.
OR

Q: 3 [A] Define generalized power function and in usual notations prove that:
(i) $a^{x+y}=a^{x} \cdot a^{y}$
(ii) $a^{n}=\underbrace{a . a \ldots \ldots a}_{n \text { times }}$
(iii) $a^{-n}=\underbrace{\frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \ldots \ldots \frac{1}{a}}_{n \text { times }}$
[B] Prove that $\sqrt{11}$ is not a rational number.
Q: 4 [A] Prove that interior of a set S is the largest open subset of S.
[B] If S and T are sets of real numbers then prove the following
(i) $S \subset T \Rightarrow S^{\prime} \subset T^{\prime}$ (ii) $(S \cup T)^{\prime}=S^{\prime} \cup T^{\prime}$

Q: 4 [A] Prove that a set is closed iff its complement is open.
[B] Prove that derived set of a bounded set is bounded.
Q: 5 [A] Let f and g be two functions defined on some neighbourhood of a such that $\lim _{x \rightarrow a} f(x)=l$ and $\lim _{x \rightarrow a} g(x)=m$. Prove that $\lim _{x \rightarrow a}[f(x) g(x)]=l m$
[B] If a function is continuous on a closed interval $[a, b]$, then it attains its bounds at least once in $[a, b]$.

OR

Q: 5 [A] If a function f is continuous at an interior point c of $[a, b]$ and $f(c) \neq 0$, then prove that, there exists $\delta>0$ such that $f(x)$ has the same sign as $f(c)$ for every $x \in(c-\delta, c+\delta)$.
[B] Evaluate $\lim _{x \rightarrow 0} \frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}+1}$
Q: $6[\mathrm{~A}]$ If $f^{\prime}(c)>0$, then prove that f is a monotonic increasing function at point $x=c$.
[B] Prove that the function $\frac{1}{x}$ is not uniformly continuous on $(0,1]$.

OR

Q: 6 [A] Prove that a function which is derivable at a point is necessarily continuous at that point. Is the converse true? Justify.
[B] Prove that, $\frac{x}{1+x}<\log (1+x)<x$ for all $x>0$.

