Vitthalbhai Patel & Rajratna P. T. Patel Science College, Vallabh Vidyanagar B. Sc. (Semester-V) Subject : INORGANIC CHEMISTRY (US05CCHE03)

[10]

Date: 03-10-2018 Day: Wednesday Internal Test

Marks : 50 Time : 10.00 A.M. to 12.00 Noon

Note: (i) All questions are to be attempted.

	(ii) Figures to t	the right indicate	e marks.			
Q.1	Choose the correct option for the following :					
(i)	Which of the following molecule contain infinite fold axis of rotation ?					
	(a) Water	(b) Ammonia	(c) Methane	(d) Acetylene		
(ii)	Which of the following is the principle axis of rotation in benzene molecule ?					
	(a) C ₂	(b) C ₃	(c) C ₄	(d) C ₆		
(iii)	The electronic distribution in $[Co(NO_2)_6]^{-3}$ complex is					
	(a) $t_{2g}^{6} e_{g}^{0}$	(b) $t_{2g}^{6} e_{g}^{2}$	(c) $t_{2g}^{4} e_{g}^{2}$	(d) $t_{2g}^{63} e_{g}^{3}$		
(i∨)	How many bands are observed in the spectra of $[V(H_2O)_6]^{+3}$?					
	(a) 5	(b) 2	(c) 3	(d) 1		
(\vee)	What will be the value of potential energy in a one dimensional Schrodinger wave					
	equation ?					
	(a) variable	(b) constant	(c) low	(d) high		
(∨i)	Which of the following values of λ does not give a well behaved wave function ?					
	(a) zero	(b) positive	(c) negative	(d) real		
(vii)	Which of the ligand have strongest trans effect?					
	(a) CO	(b) PR ₃	(c) NH ₃	(d) H ₂ O		
(viii)	The reaction between the at a particular wavelength and concentration is					
	expressed by Beer's law.					
	(a) absorption	(b) sorption	(c) chemisorptio	n (d) absorbance		

Q.2 Answer the following (Attempt any Five) :

- (i) Give the difference between C_{3v} and C_{3h} point group.
- (ii) Identify symmetry elements and detect the point group of (i) CO₂ (ii) Methane
- (iii) Explain microstates of e_{g}^{2} configuration.
- (iv) Give difference between high spin complex and low spin complex.
- (v) State first postulate of quantum mechanics.
- (vi) Give the characteristics of well-behaved wave function.
- (vii) Explain trans effect giving suitable example.
- (viii) Define: (i) Substrate (ii) Activation energy

Q.3 [a] [b]	Answer the following: Prove that Sn ²ⁿ = E for n = odd number, with proper example. Write short note on : Cubic point group	[08]
Q.3 [a] [b]	OR Answer the following: Prove that $C_3^1 \times \sigma_{vb} \neq \sigma_{vb} \times C_3^1$ for C_{3v} point, group, with proper example. Write short note on D_n point group.	[08]
Q.4 [a] [b]	Answer the following : Discuss the splitting of d-orbital in tetrahedral field. Write note on John-Teller effect.	[08]
Q.4 [a] [b]	Answer the following: Explain : $[Ti(H_2O)_6]^{+3}$ is violet in colour. Calculate the LFSE of $[Co(H_2O)_6]^{+2}$ complex which is a high spin complex. The value of pairing energy (P) is 22,500 cm ⁻¹ and $\Delta_0 = 9,300$ cm ⁻¹ .	[08]
Q.5 [a] [b]	Answer the following : Explain: Hermitian operator and Unitary operator Write a note on Normalization and Orthogonality. OR	[08]
Q.5 [a] [b]	Answer the following : Discuss the Fourth postulate of quantum mechanics. Calculate the wavelength of photon emitted when the electron confined to a box of 5Å width moves from n=3 to n=1.	[08]
Q.6 [a]	(Given: $h = 6.625 \times 10^{-27}$ erg.sec, $c = 3.0 \times 10^{10}$ cm.sec ⁻¹ , $m_e = 9.1 \times 10^{-28}$ gm) Answer the following : Discuss the factors affecting stability of complexes depends on nature of central metal ion.	[08]
[b]	Explain electrostatic polarization theory of trans effect. OR	
Q.6 [a] [b]	Answer the following : Discuss S _N 2 mechanism in ligand field substitution reaction in octahedral complex. Discuss the base hydrolysis reaction of six coordinated Co(III) ammine complexes.	[08]
