# Vitthalbhai Patel \& Rajratna P. T. Patel Science College, Vallabh Vidyanagar <br> <br> B. Sc. (Semester-V) <br> <br> B. Sc. (Semester-V) Subject : INORGANIC CHEMISTRY (US05CCHE03) 

 Subject : INORGANIC CHEMISTRY (US05CCHE03)}

Internal Test
Marks : 50
Date : 03-10-2018
Day: Wednesday
Time : 10.00 A.M. to 12.00 Noon

Note: (i) All questions are to be attempted.
(ii) Figures to the right indicate marks.
Q. 1 Choose the correct option for the following :
(i) Which of the following molecule contain infinite fold axis of rotation ?
(a) Water
(b) Ammonia
(c) Methane
(d) Acetylene
(ii) Which of the following is the principle axis of rotation in benzene molecule ?
(a) $\mathrm{C}_{2}$
(b) $\mathrm{C}_{3}$
(c) $C_{4}$
(d) $\mathrm{C}_{6}$
(iii) The electronic distribution in $\left[\mathrm{CO}\left(\mathrm{NO}_{2}\right)_{6}\right]^{-3}$ complex is $\qquad$
(a) $t_{2 g}{ }^{6} e_{g}{ }^{0}$
(b) $t_{2 g}{ }^{6} e_{g}{ }^{2}$
(c) $t_{2 g}{ }^{4} e_{g}{ }^{2}$
(d) $t_{2 g}{ }^{63} e_{B}{ }^{3}$
(iv) How many bands are observed in the spectra of $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ ?
(a) 5
(b) 2
(c) 3
(d) 1
(v) What will be the value of potential energy in a one dimensional Schrodinger wave equation?
(a) variable
(b) constant
(c) low
(d) high
(vi) Which of the following values of $\lambda$ does not give a well behaved wave function ?
(a) zero
(b) positive
(c) negative
(d) real
(vii) Which of the ligand have strongest trans effect?
(a) CO
(b) $P R_{3}$
(c) $\mathrm{NH}_{3}$
(d) $\mathrm{H}_{2} \mathrm{O}$
(viii) The reaction between the $\qquad$ at a particular wavelength and concentration is expressed by Beer's law.
(a) absorption
(b) sorption
(c) chemisorption
(d) absorbance
Q. 2 Answer the following (Attempt any Five) :
(i) Give the difference between $C_{3 v}$ and $C_{3 h}$ point group.
(ii) Identify symmetry elements and detect the point group of (i) $\mathrm{CO}_{2}$ (ii) Methane
(iii) Explain microstates of $\mathrm{e}_{\mathrm{g}}{ }^{2}$ configuration.
(iv) Give difference between high spin complex and low spin complex.
(v) State first postulate of quantum mechanics.
(vi) Give the characteristics of well-behaved wave function.
(vii) Explain trans effect giving suitable example.
(viii) Define: (i) Substrate (ii) Activation energy

## Q. 3 Answer the following:

[a] Prove that $\mathrm{Sn}^{2 \mathrm{n}}=\mathrm{E}$ for $\mathrm{n}=$ odd number, with proper example.
[b] Write short note on : Cubic point group OR
Q. 3 Answer the following:
[a] Prove that $C_{3}{ }^{1} \times \sigma_{v b} \neq \sigma_{v b} \times C_{3}{ }^{1}$ for $C_{3 v}$ poin. 乞roup, with proper example.
[b] Write short note on $D_{n}$ point group.
Q. 4 Answer the following :
[a] Discuss the splitting of d-orbital in tetrahedral field.
[b] Write note on John-Teller effect.

Q. 4 Answer the following:
[a] Explain: $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ is violet in colour.
[b] Calculate the LFSE of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ complex which is a high spin complex. The value of pairing energy $(P)$ is $22,500 \mathrm{~cm}^{-1}$ and $\Delta_{0}=9,300 \mathrm{~cm}^{-1}$.
Q. 5 Answer the following :
[a] Explain: Hermitian operator and Unitary operator
[b] Write a note on Normalization and Orthogonality.
OR
Q. 5 Answer the following:
[a] Discuss the Fourth postulate of quantum mechanics.
[b] Calculate the wavelength of photon emitted when the electron confined to a box of $5 \AA$ width moves from $n=3$ to $n=1$.
( Given: $h=6.625 \times 10^{-27}$ erg.sec, $c=3.0 \times 10^{10} \mathrm{~cm} \cdot \mathrm{sec}^{-1}, \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-28} \mathrm{gm}$ )
Q. 6 Answer the following :
[a] Discuss the factors affecting stability of complexes depends on nature of central metal ion.
[b] Explain electrostatic polarization theory of trans effect.

## OR

Q. 6 Answer the following :
[a] Discuss $\mathrm{S}_{\mathrm{N}} 2$ mechanism in ligand field substitution reaction in octahedral complex.
[b] Discuss the base hydrolysis reaction of six coordinated Co(III) ammine complexes.

