V.P. \& R.P.T.P. Science College,V.V.Nagar Internal Test: 2019-20

Subject: Mathematics US03CMTH21 Max. Marks: 25
Numerical Methods
Date: 05/10/2019
Timing: $03.00 \mathrm{pm}-04.15 \mathrm{pm}$

Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.
[1] Initial approximations of root of an equation obtained by Iteration method can be used for further appoximation while using the method of
[A] Aitken's Δ^{2}-Process
[B] Bisection
[C] False position
[D] nonc
[2] $E y_{n}-y_{n}=$
[A] Δy_{n}
[B] ∇y_{n}
[C] Δy_{n-1}
[D] ∇y_{n-1}
[3] If $y_{5}=4$, and $y_{15}=10$ then $E^{5} y_{10}=$
[A] 5
[B] 10
[C] 15
[D] 20

[4] For the given data | \mathbf{x} | $x_{0}=2$ | $x_{1}=6$ | $x_{2}=10$ | $x_{3}=14$ |
| :---: | :---: | :---: | :---: | :---: |
| \mathbf{y} | 15 | 20 | 32 | 50 | $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]=$

[A] 1
[B] 2
[C] 3
[D] nonc
[5] Which of the following method can be used to evaluate a numerical integral?
[A] Picard's Method
[B] Euler's Method
[C] Runge-Kutta method
[D] Romberg's Method

Q: 2. Discuss the False Position method for approximation
OR
Q:2. Find a real root of $2 x=\cos x+3$ by iteration method correct upto three decimal places

Q: 3. Derive Newton's Forward Difference interpolation formula for equally spaced values of arguments.

Q: 3. By using Gauss's backward interpolation formula find a cubic polynomial $f(x)$ given that

$$
f(1)=-1, f(2)=11, f(3)=35 . f(4)=77, \text { and }, f(5)=143
$$

Hence find $f(0)$ and $f(6)$

Q: 4. Obtain $1^{\text {st }}$ and $2^{\text {nd }}$ order numerical differentiation formula from Newton's forward difference formula
OR

Q: 4. Tabulate $y=x^{3}$ for $x=2,3,4.5$ and calculate $\sqrt[3]{10}$ correct upto three decimal places

Q: 5. Using Newton's forward difference formula. find the general formula for numerical integration and hence derive Simpson's $\frac{3}{8}$-rule

OR

Q: 5. Use Picard's method to approximate y when $x=0.25$, given that $y(0)=0$ and $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}$ correct upto three decimal places

