

V.P. & R.P.T.P. Science College, V.V. Nagar

Internal Test: 2019-20

Subject: Mathematics

US03CMTH21

Max. Marks: 25

Numerical Methods

Date: 05/10/2019

[C] False position

Timing: 03.00 pm - 04.15 pm

Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.

5

[1] Initial approximations of root of an equation obtained by Iteration method can be used for further appoximation while using the method of [A] Aitken's Δ^2 -Process

[B] Bisection

- $[2] Ey_n y_n =$ [A] Δy_n
- [B] ∇y_n
- [C] Δy_{n-1}
- [D] ∇y_{n-1}

- [3] If $y_5 = 4$, and $y_{15} = 10$ then $E^5y_{10} =$
- [C] 15
- [D] 20
- [4] For the given data $\begin{bmatrix} x & x_0 = 2 & x_1 = 6 & x_2 = 10 \\ y & 15 & 20 & 32 \end{bmatrix}$ $x_3 = 14$

[B] 2

[C] 3

[D] none

- [5] Which of the following method can be used to evaluate a numerical integral?
 - [A] Picard's Method
- [B] Euler's Method
- [C] Runge-Kutta method
- [D] Romberg's Method
- Discuss the False Position method for approximation Q: 2.

5

OR

Find a real root of $2x = \cos x + 3$ by iteration method correct upto three Q: 2. decimal places

5

Derive Newton's Forward Difference interpolation formula for equally spaced Q: 3. values of arguments.

5

OR

By using Gauss's backward interpolation formula find a cubic polynomial f(x)Q: 3. given that

$$f(1) = -1$$
, $f(2) = 11$, $f(3) = 35$, $f(4) = 77$, and $f(5) = 143$

Hence find f(0) and f(6)

5

Q: 4. Obtain 1^{st} and 2^{nd} order numerical differentiation formula from Newton's forward difference formula

OR

- Q: 4. Tabulate $y = x^3$ for x = 2, 3, 4, 5 and calculate $\sqrt[3]{10}$ correct upto three decimal places
- Q: 5. Using Newton's forward difference formula, find the general formula for numerical integration and hence derive Simpson's $\frac{3}{8}$ -rule 5

OR

Q: 5. Use Picard's method to approximate y when x = 0.25, given that y(0) = 0 and $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ correct upto three decimal places

