

V.P. & R.P.T.P. Science College Vallabh Vidyanagar-388120

B.Sc. (Semester - 4) Subject: Physics Course: USO4CPHY01 Title of the paper: Electromagnetic Theory and Spectroscopy INTERNAL TEST

Date: 06-03-2019, Wednesday

Time: 3 pm to 5 pm Total Marks: 50

Q	-1 MCQs: [8 Marks]						
1	Vector point function in given (a) Positive Figure hasdivergence. (b) Negative (c) Zero (d) None of these						
2	Joule / Coulomb is the unit of						
	(a) Electric (b) Electric (c) Electric (d) Potential Force Flux potential energy						
3	A charged particle traveling with a velocity \vec{v} in a magnetic field \vec{B} experiences a force \vec{F} that must be:						
	(a) parallel(b) perpendicular(c) perpendicular(d) perpendicularto \vec{v} to only \vec{v} to \vec{v} and \vec{B} to $\vec{v} \ge \vec{B}$						
4	Which of the following relationship is incorrect in magnetostatics?						
	(a) $\vec{\nabla} \bullet \vec{B} = 0$ (b) $\vec{\nabla} \bullet \vec{J} = 0$ (c) $\vec{\nabla} \times \vec{B} = 0$ (d) $\vec{\nabla} \cdot \vec{A} = 0$						
5	If $L = 3$ and $S = 1$, there are possible number of ways in which L and S can be combined.						
	(a) 2 (b) 3 (c) 4 (d) 5						
6	6 In a continuous spectrum, intensity of a spectral maximum at wavelength $[\lambda_m]$ when temperature of the sample is [T]. If temperature of the sample is double, λ_m will be equal to						
	(a) $\Lambda_{\rm m}$ (b) $\Lambda_{\rm m}/2$ (c) $2 \times \Lambda_{\rm m}$ (d) $\Lambda_{\rm m}^2$						
7	Minimum interplanar spacing required for Bragg's diffraction is:(a) $\lambda/4$ (b) $\lambda/2$ (c) λ (d) 2λ						
8	The wavelength of X-rays varies between cm tocm.						
	(a) 6×10^{-12} to 35×10^{-12} (b) 6×10^{-13} to 35×10^{-13} (c) 6×10^{-14} to 35×10^{-14} (d) 6×10^{-15} to 35×10^{-15}						
	Page 1 of 2						

Q-2	Short Questions [Attempt any FIVE] [5 ×2 Marks = 10 mar	ks]
1	State and explain Coulomb's law.	-
2	Explain: curl of \vec{E} .	
3	Derive cyclotron formula.	
1	Discuss the boundary conditions in magnetostatics.	
5	Write allowed combination of (n, l, j) for L – shell.	
6	Compare normal and anomalous Zeeman effect.	
7	State and explain Duane-Hunt law.	
8	Compare optical spectrum and X-ray spectrum (Any four points)	۱.

Long Questions:

Q-3 (a)	Explain the concept of electric field lines and electric flux.	5			
	Derive and discuss Gauss's law.				
Q-3 (b)	Using Gauss's law prove that electric field (\vec{E}) due to an infinite	3			
	thin plane which carries uniform surface charge σ is $\frac{\sigma}{2\epsilon_0} \hat{n}$.				
	OR				
Q-3 (a)	Write a note on electric potential.	5			
Q-3 (b)	Find the electric potential inside and outside a spherical shell				
	of radius R, which carries a uniform surface charge (σ). Set the				
	reference point at infinity.				

Q-4 (a) State and explain (i) Biot-Savart law and (ii) Ampere's law.				
Q-4 (b)	Using Ampere's law, find the magnetic field a distance s from a	3		
	long straight wire carrying a steady current I.			
	OR			

Q-4	Explain:	(a)	$\overrightarrow{\nabla}$	B	and	(b)	$\overrightarrow{\nabla}$	$\mathbf{x} \vec{\mathbf{B}}$.
6	Tablett.	(m)			MAINE	(\sim)	v.	2 P 1 1

Q-5	Write a note on Vector Atom Model.	8
	OR	
Q-5	Write a note on Zeeman effect.	8
~		

Q-6 Discuss different techniques to produce X-rays and enlist 8 merits and demerits of these methods.
OR
Q-6 State and derive Moseley's law. Discuss the applications of 8 Moseley's law.

R.P. Science College

Nac

Page 2 of 2

8