V.P. \& R.P.T.P. Science College
 Vallabh Vidyanagar-388120

B.Sc. (Semester - 4) Subject: Physics Course: USO4CPHY01 Title of the paper: Electromagnetic Theory and Spectroscopy INTERNAL TEST
Date: 06-03-2019, Wednesday

Time: 3 pm to 5 pm
Total Marks: 50

Q-1 MCQs:

[8 Marks]
1 - Vector point function in given (a) Positive

Figure has \qquad divergence.
(b) Negative
(c) Zero
(d) None of these

2 Joule / Coulomb is the unit of
(a)
Electric Force
(b)
Electric Flux
(c) Electric potential
(d) Potential energy

3 A charged particle traveling with a velocity \vec{v} in a magnetic field \vec{B} experiences a force \vec{F} that must be:
(a) parallel
to \vec{v}
(b) perpendicular to only \vec{v}
(c) perpendicular
to \vec{v} and \vec{B}
(d) perpendicular to $\vec{v} \times \vec{B}$

4 Which of the following relationship is incorrect in magnetostatics?
(a) $\vec{\nabla} \cdot \vec{B}=0$
(b) $\vec{\nabla} \cdot \vec{j}=0$
(c) $\vec{\nabla} \times \overrightarrow{\mathrm{B}}=0$
(d) $\vec{\nabla} \cdot \overrightarrow{\mathrm{A}}=0$

5 If $L=3$ and $S=1$, there are \qquad possible number of ways in which L and S can be combined.
(a) 2
(b) 3
(c) 4
(d) 5

6 In a continuous spectrum, intensity of a spectral maximum at wavelength [λ_{m}] when temperature of the sample is [T]. If temperature of the sample is double, λ_{m} will be equal to
(a) λ_{m}
(b) $\quad \lambda_{m} / 2$
(c) $2 \times \lambda_{\mathrm{m}}$
(d) $\quad \lambda_{\mathrm{m}}{ }^{2}$

7 Minimum interplanar spacing required for Bragg's diffraction is:
(a)
(b) $\lambda / 2$
(c) λ
(d) 2λ

8 The wavelength of X-rays varies between \qquad cm to \qquad cm.
(a)
(b) 6×10^{-13} to 35×10^{-13}
(c)
6×10^{-12} to 35×10^{-12}
(d) 6×10^{-15} to 35×10^{-15}

Q-2	Short Questions [Attempt any FIVE] \quad [$\mathbf{5} \times \mathbf{2}$ Marks $=\mathbf{1 0}$ marks]
$\mathbf{1}$	State and explain Coulomb's law.
$\mathbf{2}$	Explain: curl of $\overrightarrow{\text { E. }}$
$\mathbf{3}$	Derive cyclotron formula.
4	Discuss the boundary conditions in magnetostatics.
$\mathbf{5}$	Write allowed combination of (n, l, j) for $L-$ shell.
6	Compare normal and anomalous Zeeman effect.
7	State and explain Duane-Hunt law.
$\mathbf{8}$	Compare optical spectrum and X-ray spectrum (Any four points).

Long Questions:

Q-3 (a)	Explain the concept of electric field lines and electric flux. Derive and discuss Gauss's law.	
Q-3 (b)	Using Gauss's law prove that electric field ($\overrightarrow{\mathrm{E}}$) due to an infinite thin plane which carries uniform surface charge σ is $\frac{\sigma}{2 \epsilon_{0}} \hat{n}$. OR	3
Q-3 (a)	Write a note on electric potential.	5
Q-3 (b)	Find the electric potential inside and outside a spherical shell of radius R, which carries a uniform surface charge (σ). Set the reference point at infinity.	3

Q-4 (a) State and explain (i) Biot-Savart law and (ii) Ampere's law. 5
Q-4 (b) Using Ampere's law, find the magnetic field a distance s from a 3 long straight wire cartying a steady current I.

OR

Q-4 Explain: (a) $\vec{\nabla} \cdot \vec{B}$ and (b) $\vec{\nabla} \times \vec{B}$.

Q-5	Write a note on Vector Atom Model.	8
Q-5	Write a note on Zeeman effect.	8

Q-6 Discuss different techniques to produce X-rays and enlist 8 merits and demerits of these methods.

OR
Q-6 State and derive Moseley's law. Discuss the applications of 8 Moseley's law.

