V.P. \& R.P.T.P. Science College,V.V.Nagar

 Internal Test: 2018-19Subject: Mathematics
US04CMTH02
Max. Marks : 50
Differential Equations

Date: 12/03/2019 Timing: 03:00 pm-05:00 pm
Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.
[1] Integral curve of $d x=4 y d y=6 z d z$ is given by

$$
\begin{array}{lll}
\text { (A] } x+2 y^{2}=c_{1}, x+3 z^{2}=c_{2} & \text { [B] } x^{2}+2 y^{2}=c_{1}, x^{2}+3 z^{2}=c_{2} \\
\text { [C] } x^{2}=2 y^{2}+c_{1}, x^{2}=3 z^{2}+c_{2} & \text { [D] } x=2 y^{2}+c_{1}, x=3 z^{2}+c_{2}
\end{array}
$$

[2] Integral curve of $e^{x} d x=e^{y} d y=e^{z} d z$ is given by

$$
\begin{array}{lll}
\text { [A] } e^{x}+e^{y}=c_{1}: e^{y}-e^{z}=c_{2} & \text { [B] } e^{x}-e^{y}=c_{1}: e^{y}+e^{z}=c_{2} \\
\text { [C] } e^{x}+e^{y}=c_{1} ; e^{y}+e^{z}=c_{2} & \text { [D] } e^{x}-e^{y}=c_{1} ; e^{y}-e^{z}=c_{2}
\end{array}
$$

[3] $a x+b y+z=5$ is a solution of
[A] $\mathrm{px}-\mathrm{qy}+\mathrm{z}=5$
[B] $\mathrm{q} x-\mathrm{py}+\mathrm{z}=5$
[C] $p x+q y-z=-5$
[D] none
[4] The general solution of the partial differential equation $p+q=1$ is an arbitrary function $F(u, v)=0$, where $u(x, y, z)=c_{1}$ and $v(x, y, z)=c_{2}$ are solutions of $[\mathrm{A}] d x+d y+d z=0[\mathrm{~B}] d x+d y=d z \quad[\mathrm{C}] \frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}[\mathrm{D}] d x=d y=d z$
[5] The surfaces orthogonal to a one parameter family of surfaces $2 x^{2}+3 y^{2}+4 z^{2}=c$ are the surfaces generated by the integral curves of the equations
[A] $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$
[B] $\frac{d x}{2 x}=\frac{d y}{3 y}=\frac{d z}{4 z}$
[C] $2 x d x=3 y d y=4 z d z$
[D] $x d x=y d y=z d z$
[6] Integral surface of the linear partial differential equation $x^{2} p-y^{2} q=z^{2}$ can be obtained by solving the differential equation

$$
\begin{array}{ll}
\text { [A] } \frac{d x}{z^{2}}=-\frac{d y}{x^{2}}=\frac{d z}{y^{2}} & \text { [B] } \frac{d x}{x^{2}}=\frac{d y}{y^{2}}=\frac{d z}{z^{2}} \\
\text { [C] } \frac{d x}{y^{2}}=-\frac{d y}{z^{2}}=\frac{d z}{x^{2}} & \text { [D] } \frac{d x}{x^{2}}=-\frac{d y}{y^{2}}=\frac{d z}{z^{2}}
\end{array}
$$

[7] The complete integral of $z=p x+q y+p^{2}-q^{2}$ is given by \qquad where a and b are arbitrary constants.
[A] $z=a x+b y$
[B] $z=a y+b x+a^{2}-b^{2}$
$[\mathrm{C}] z=a^{2} x-b^{2} y$
[D] $z=a x+b y+a^{2}-b^{2}$
[8] For a partial differential equation $p q=5$, the Charpit's auxiliary equations are given by

$$
\begin{array}{ll}
{[\mathrm{A}] \frac{d x}{y}=\frac{d y}{x}=\frac{d z}{2 p q}=\frac{d p}{0}=\frac{d q}{0}} & \text { [B] } \frac{d x}{p}=\frac{d y}{q}=\frac{d z}{2 p q}=\frac{d p}{0}=\frac{d q}{0} \\
\text { [C] } \frac{d x}{q}=\frac{d y}{p}=\frac{d z}{2 p q}=\frac{d p}{0}=\frac{d q}{0} & \text { [D] } \frac{d x}{x}=\frac{d y}{y}=\frac{d z}{2 p q}=\frac{d p}{0}=\frac{d q}{0}
\end{array}
$$

Q: 2. Answer any FIVE of the following.
[1] Find the integral curves of the equations $\frac{d x}{\sqrt{x}}=\frac{d y}{\sqrt[3]{y}}=\frac{d z}{\sqrt[4]{z}}$
[2] Find the integral curves of $\frac{d x}{2}=-\frac{d y}{3}=\frac{d z}{4}$
[3] Determine whether the equation $y d x+x d y=5 z d z$ is integrable or not.
[4] Obtain partial differential equation of $a x-b y+4 z=12$
[5] Obtain a differential equation of the form $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ whose solution generates surfaces orthogonal to the surfaces $5 x^{2}+6 y^{2}+7 z^{2}=c$
[6] Find a differential equation which can be solved to obtain integral curve of the linear partial differential equation $p x-q y^{2}=z^{2}$
[7] Find the Charpit's auxiliary equations for $5 p^{2} q^{2}=1$
[8] Find the general solution of $\left(D-3 D^{\prime}\right) z=0$.
Q: 3 [A] Find the integral curves of the equations

$$
\frac{d x}{y(x+y)+a z}=\frac{d y}{x(x+y)-a z}=\frac{d z}{z(x+y)}
$$

[B] Solve : $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$

Q: 3 [A] Solve : $\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$
[B] Solve : $\frac{d x}{y^{2}(x-y)}=\frac{d y}{-x^{2}(x-y)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$
Q: 4 [A] If X is a vector such that $X \cdot \operatorname{curl} X=0$ and μ is an arbitrary function of x, y and z then prove that $(\mu X) \cdot \operatorname{curl}(\mu X)=0$
[B] Determine whether the Pfaffian differential equation

$$
(y+z) d x+(z+x) d y+(x+y) d z=0
$$

is integrable or not. Find its solution if it is integrable

OR

Q: 4 [A] Prove that a necessary and sufficient condition that the Pfaffian differential cquation $X \cdot d r=0$ is intcgrable is that $X \cdot \operatorname{curl} X=0$
[B] Determine whether the Pfaffian differential equation $z(z+y) d x+z(z+x) d y-2 x y d z=0$ is integrable or not. Find its solution if it is integrable

Q: 5 [A] Find Integral Surface of the linear partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line $x+y=0 ; z=1$
[B] Find the surface which is orthogonal to one parameter system $z=c x y\left(x^{2}+y^{2}\right)$ and which passes through the hyperbolas $x^{2}-y^{2}=a^{2} ; z=0$

OR
Q: 5 [A] Find the integral surface of the linear partial differential equation $2 y(z-3) p+(2 x-z) q=y(2 x-3)$ passing through the circle $z=0, x^{2}+y^{2}=2 x$
[B] Find the integral surface of the equation $x^{2} p+y^{2} q=-z^{2}$ which passes through the hyperbola $x y=x+y, \quad z=1$

Q: $6[\mathrm{~A}]$ Prove that two first order partial differential equations $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ are compatible if $[f, g]=0$ where

$$
[f, g]=\frac{\partial(f, g)}{\partial(x, p)}+p \frac{\partial(f, g)}{\partial(z, p)}+\frac{\partial(f, g)}{\partial(y, q)}+q \frac{\partial(f, g)}{\partial(z, q)}
$$

[B] Find the complete integral of $p+q=p q$

OR

Q: $6[\mathrm{~A}]$ Show that the equations $x p-y q=x$ and $x^{2} p+q=x z$ are compatible and find their solution.
[B] If $\mu_{1}, \mu_{2}, \ldots . \mu_{n}$ are solutions of homogeneous linear clifferential equation $F\left(D, D^{\prime}\right) z=0$ then $\sum_{r=1}^{n} c_{r} \mu_{r}$ is also solution of $F\left(D, D^{\prime}\right) z=0$, where c_{r} are arbitrary constants

