V.P. \& R.P.T.P. Science College,V.V.Nagar

Internal Test: 2014-15
Subject: Mathematics
US04CMTH02
Max. Marks : 25
Differential Equations
Date: 18/03/2015
Timing: $10.30 \mathrm{am}-12.00 \mathrm{pm}$
Instructions: (1) This question paper contains FIVE questions.
(2) The figures to the right side indicate full marks of the corresponding question/s
(3) The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.
[1] Integral curve of $2 x d x=d y=2 z d z$ is given by
[A] $x^{2}+y=c_{1}, y+z^{2}=c_{2}$
[B] $x^{2}+y=c_{1}, y-z^{2}=c_{2}$
[C] $x^{2}+y=c_{1}, y+z^{2}=c_{2}$
[D] $x^{2}-y=c_{1}, y-z^{2}=c_{2}$
[2] $a x+b y-z=1$ is a solution of
[A] $\mathrm{px}-\mathrm{qy}-\mathrm{z}=1$
[B] $q x-p y-z=1$
[C] $p+y-z=1$
[D] $p x+q y-z=1$

[3] Integral surface of the linear partial differential equation $x^{2} p-y^{2} q=z^{2}$ can be obtained by solving the differential equation
[A] $\frac{d x}{z^{2}}=-\frac{d y}{x^{2}}=\frac{d z}{y^{2}}$
[B] $\frac{d x}{x^{2}}=\frac{d y}{y^{2}}=\frac{d z}{z^{2}}$
[C] $\frac{d x}{y^{2}}=-\frac{d y}{z^{2}}=\frac{d z}{x^{2}}$
[D] $\frac{d x}{x^{2}}=-\frac{d y}{y^{2}}=\frac{d z}{z^{2}}$

Q:2. Answer any TWO of the following.
[1] Find the integral curves of the equations $\frac{d x}{1+x}=\frac{d y}{1+y}=\frac{d z}{z}$
[2] Obtain partial differential equation of $a x-b y+4 z=12$
[3] Find a differential equation which can be solved to obtain integral curve of the linear partial differential equation $p x^{2}+q y^{2}=z$

Q: 3. Solve the equation $\frac{d x}{y+\alpha z}=\frac{d y}{z+\beta x}=\frac{d z}{x+\gamma y}$

OR

Q: 3. Find the orthogonal trajectories of hyperboloids $x^{2}+y^{2}-z^{2}=1$ of the conics in which it is cut by the planes $x+y=c$

Q: 4. Define Paffian differential equation. Also prove that a necessary and sufficient condition that the Pfaffian differential equation $X . d r=0$ is be integrable is that $X . \operatorname{curl} X=0$

OR

Q: 4 [A] Eliminate the arbitrary function f from the function $z=x+y+f(x y)$
[B] Solve: $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z$
Q: $5 . \quad$ Find the integral surface of the equation $x^{2} p+y^{2} q=-z^{2}$ which passes through the hyperbola $x y=x+y, \quad z=1$

OR

Q: 5. Find the surface which is orthogonal to one parameter system $z=c x y\left(x^{2}+y^{2}\right)$ and which passes through the hyperbolas $x^{2}-y^{2}=a^{2} ; z=0$

