

V.P.& R.P.T.P SCIENCE COLLEGE Internal Test B.Sc.Semester- III Subject : Mathematics (US03EMTH05) Calculus and Algebra-I

Date : 14/10/2014Tuesday

Time : 2 p.m to 3 p.m. Total marks : 25

Q-1 Attempt the following

1. $\log \infty = \dots$ (a) 1 (b) 0 (c) ∞ (d) $-\infty$

2. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \& B = \begin{bmatrix} 3 & 5 \\ 6 & 4 \\ 0 & 7 \end{bmatrix}$$
 then $BA = \dots$
(a) Not possible (b) $\begin{bmatrix} 18 & 26 \\ 18 & 28 \\ 21 & 28 \end{bmatrix}$ (c) $\begin{bmatrix} 18 & 26 \\ 18 & 28 \\ 18 & 28 \end{bmatrix}$ (d) $\begin{bmatrix} 18 & 28 \\ 21 & 18 \end{bmatrix}$

3. If A is skew hermitian matrix then

(a)
$$A^{\theta} = A$$
 (b) $A^{\theta} = -(\overline{A})'$ (c) $A^{\theta} = (\overline{A})'$ (d) $A^{\theta} = -A'$

Q-2 Attempt the following. (Any two)

1. Find $\lim_{x \to 0} \frac{\log(\sin x)}{\cot x}$

- 2. If A is Hermitian matrix then prove that iA is a Skew hermitian matrix.
- 3. Define Determinant and Minor of matrix with example.

Q-3 Find a,b,c for which
$$\lim_{x \to 0} \frac{ae^x - 2b\cos x + 3ce^{-x}}{x\sin x} = 2$$

OR

Q-3 [A] Find
$$\lim_{x \to 0} (\cot x)^{\sin 2x}$$

[B] Find $\lim_{x \to 0} \left(\frac{1}{2x^2} - \frac{\cot^2 x}{2}\right)$

3

4

3

3

.

Q-4 Prove that Every square matrix can be expressed in one and only one way as the sum of a symmetric and skew symmetric matrix.

OR

Q-4 [A] If $A = \begin{bmatrix} -2 & -1 \\ 1 & 0 \\ 3 & -4 \end{bmatrix}$; $B = \begin{bmatrix} 0 & 3 \\ 2 & 0 \\ -4 & -1 \end{bmatrix}$ and 2x + 3A = B then find x. 3

[B] If A and B both are symmetric matrices then prove that AB is also symmetric matrix iff A and B are commute.

Q-5	State	and	prove	Cayley	hamilton	theorem.Also	verify it for	the	
	matrix	k A =	= [4	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$					6

OR

Q-5 [A] If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
 then find $A^2 - 4A + 5I$.
[B] If $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ then find characteristic matrix and characteristic equation of A.
3

ALL THE BEST

3