V.P. & R.P.T.P. SCIENE COLLEGE VALLABH VIDYANAGAR - 388 120 S.Y.BSc. EXAMINATION THIRD SEMESTER US03ECSC01 : DIGITAL ELECTRONICS Saturday, 11th October - 2014

Time : 02:00nm to 03:00nm

Max.Marks: 25

Scie

line.	04.00pm to 05.00pm	1V14A.1V14	1 1 2 . 40
Q.1	Multiple choice of Question		[3]
	[1] The gate has two or more input signals. All inputs must		
	be same to get a high output.		
	(A) EX-OR	(B) NAND	10 S.
	(C) EX-NOR	(D) NOR	A.Y. Sch
	[2] The relationship between a function and its binary variables can		18:
	be represented in		LIBRAF
	(A) truth table	(B) decoder	
	(C) encoder	(D) multiplexer	1
	[3] A is logic circuit that can add two binary numbers.		V. Na
	(A) binary adder	(B) decoder	
	(C) AND gate	(D) OR gate	
Q.2	Attempt any 2 questions		[4]
	[1] Write truth table for : ABC+A'B'C'		
	[2] Describe pair in k-map with example.		
	[3] What is Multiplexer?		
03	Explain NOR, NAND, NOT gate with example.		[6]
Q.3			[0]
Q.3	Explain AND, XOR, XNOR gate with example.		[6]
	- <u>1</u> , , , , , , , , , , , , , , , , , , ,	I	
Q.4	[a] Simplify $F(A,B,C,D) = \Sigma(1,3,5,6,8,11,15)$ using k-map.		[3]
	[b] Simplify $F(A,B,C)=\pi(4,6,2)$ using k-map.		[3]
	O	R	
Q.4	Define encoder. Explain 8x3 encoder in detail.		[6]
o -			5.67
Q.5	Explain 1's Complement adder-sub	otractor in detail.	[6]

OR Q.5 Explain 2's Complement adder-subtractor in detail. [6]