V.P. \& R.P.T.P. Science College, V.V.Nagar

Internal Test: 2014-15
Subject: Mathematics
US03CMTH02
Max. Marks : 25
Numerical Analysis
Date: 13/10/2014
Timing: $02.00 \mathrm{pm}-03.30 \mathrm{pm}$
Instructions: (1) This question paper contains FIVE QUESTIONS
(2) The figures to the right side indicate full marks of the corresponding question/s
(3) The symbols used in the paper have their usual meaning, unless specified.

Q:1. Answer the following by choosing correct answers from given choices.
[1] Aitkin's Δ^{2}-process is used for finding approximate
[A] derivative of a function
[B] integral of a function
[C] root of an equation
[D] none of this
[2] $\delta_{\frac{7}{2}}$ is given by
$[\stackrel{2}{\mathrm{~A}}] y_{4}-y_{3}$
[B] $y_{3}-y_{4}$
[C] $y_{7}-y_{2}$
[D] $y_{2}-y_{7}$

[3] For the given data | x | $x_{0}=3$ | $x_{1}=4$ | $x_{2}=5$ | $x_{3}=6$ | $x_{4}=7$ | $x_{5}=8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 5 | 8 | 11 | 15 | 23 | 30 | $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]=$

[A] 1
[B] 2
[C] 3
[D] none

Q: 2. Answer any TWO of the following.
[1] Find an interval containing an initial approximation of $x^{3}-4 x+1=0$
[2] If $E^{8} y_{2}=20$ and $E^{4} y_{5}=10$ then find ∇y_{10}
[3] Using Langrage's interpolation formula, find the form of the function $y(x)$ from the following table

x	1	3	4
y	2	4	8

Q: 3 [A] Using the Newton-Raphson method, establish the iterative formula

$$
x_{n+1}=\frac{1}{3}\left[2 x_{n}+\frac{N}{x_{n}^{2}}\right]
$$

to calulate the cube root of N
[B] Find a real root of $2 x=\cos x+3$ by iteration method correct upto three decimal places

OR
Q: 3 [A] Describe Bisection method for approximation of a real root of an equation
[B] Find a real root of $x^{3}-3 x+5=0$, correct upto three decimal places, by NewtonRaphson method

Q: 4 [A] In usual notations prove : $\mu=\sqrt{1+\frac{1}{4} \delta^{2}}$
[B] Locate and correct error in the following table of values

x	2.5	3.0	3.5	4.0	4.5	5.0	5.5
y	4.32	4.83	5.27	5.47	6.26	6.79	7.23

OR
Q: 4 [A] Derive Stirling's interpolation formula for equally spaced values of argument
[B] Find the cubic polynomial which takes the following values

$$
y(0)=0, y(1)=0, y(2)=1, y(3)=10
$$

Hence find the value of $y(4)-y(0.5)$
Q: 5. Derive Newton's divided difference formula

OR

Q:5. The following table of values of x and y is given:

x	0	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ when $x=6$

