V.P. & R.P.T.P. Science College, V.V. Nagar

Internal Test: 2014-15

Subject : Mathematics

US03CMTH02 Numerical Analysis Max. Marks: 25

Date: 13/10/2014

Timing: 02.00 pm - 03.30pm

Instructions : (1) This question paper contains FIVE QUESTIONS

(2) The figures to the right side indicate full marks of the corresponding question/s

(3) The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.

[1] Aitkin's Δ^2 -process is used for finding approximate

- [A]derivative of a function integral of a function B [D] none of this
- [C] root of an equation
- $\begin{bmatrix} 2 \end{bmatrix} \delta_{\frac{7}{2}}$ is given by [C] $y_7 - y_2$ $[A] y_4 - y_3$ $[B] y_3 - y_4$ [D] $y_2 - y_7$ $x_5 = 8$ 30 $[x_1 \ x_2 \ x_3] =$ [B] 2 [C] 3 [D] none

Q: 2. Answer any TWO of the following.

- [1] Find an interval containing an initial approximation of $x^3 4x + 1 = 0$
- [2] If $E^8y_2 = 20$ and $E^4y_5 = 10$ then find ∇y_{10}
- [3] Using Langrage's interpolation formula, find the form of the function y(x) from the following table

Q: 3 [A] Using the Newton-Raphson method, establish the iterative formula

$$x_{n+1} = \frac{1}{3} \left[2x_n + \frac{N}{x_n^2} \right]$$

to calulate the cube root of N

B Find a real root of $2x = \cos x + 3$ by iteration method correct up to three decimal places

1

3

4

3

3

Q: 3 [A] Describe Bisection method for approximation of a real root of an equation

[B] Find a real root of $x^3 - 3x + 5 = 0$, correct up to three decimal places, by Newton-Raphson method

Q: 4 [A] In usual notations prove :
$$\mu = \sqrt{1 + \frac{1}{4}\delta^2}$$

[B] Locate and correct error in the following table of values

Х	2.5	3.0	3.5	4.0	4.5	5.0	5.5
У	4.32	4.83	5.27	5.47	6.26	6.79	7.23

OR

Q: 4 [A] Derive Stirling's interpolation formula for equally spaced values of argument

[B] Find the cubic polynomial which takes the following values

$$y(0) = 0, y(1) = 0, y(2) = 1, y(3) = 10$$

Hence find the value of y(4) - y(0.5)

Q: 5. Derive Newton's divided difference formula

OR

Q: 5. The following table of values of x and y is given :

x	0	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find $\frac{dg}{dx}$ and $\frac{dg}{dx^2}$ when x = 6

6

3

3

3

3

6