V.P.\& R.P.T.P.Science College, Vallabh Vidyanagar.
B.Sc. (Semester - II) Internal Test

US02CMTH21 (Algebra)
Date. 9/3/2019 : Saturday 12.30 p.m. to 2.30 pom. Maximum Marks: 50

Que. 1 Fill in the blanks.

(1) The modulus of $\frac{(3-\sqrt{2} i)^{2}}{1+2 i}$ is \qquad
(a) $\frac{11}{\sqrt{5}}$
(b) $\frac{11}{5}$
(c) $\frac{7}{\sqrt{5}}$
(d) $\frac{13}{\sqrt{5}}$
(2) General value of $\log (-i)=$ _._-_-_-_.........
(a) $i\left(n-\frac{1}{2}\right) \pi$
(b) $\quad i\left(2 n-\frac{1}{2}\right)$
(c) $\left(2 n-\frac{1}{2}\right) \pi$
(d) $\quad i\left(2 n-\frac{1}{2}\right) \pi$
(3) If any set $X \sim N$ then X is said to be \qquad set.
(a) finite
(b) denumerable
(c) empty
(d) oneone
(4) Non zero matrices A and B are called divisor of zero if \qquad
(a) $A=O, B \neq O$
(b) $A B \neq O$
(c) $A B=O$
(d) None
(5) If a matrix A has non-zero minor of order r then \qquad
(a) $\rho(A)=r$
(b) $\quad \rho(A) \leq r$
(c) $\quad \rho(A)<r$
(d) $\quad \rho(A) \geq r$
(6) If A is a matrix with 6 columns and $\operatorname{rank}(A)=2$ then nullity of A is \qquad -.
(a) 6
(b) 0
(c) 2
(d) 4
(7) Every orthogonal matrix is \qquad
(a) Hermitian
(b) Nilpotent
(c) Unitary
(d) none
(8) If a 3×3 matrix A has eigen values $2,3,5$ then $|A|=$ \qquad
(a) 6
(b) 10
(c) 30
(d) 15

Que. 2 Answer the following (Any Five)
(1) Prove that $\sin i x=i \sinh x$.
(2) Find all the roots of $\sinh z=i$.
(3) If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -2 & 4 & 0\end{array}\right], B=\left[\begin{array}{cc}1 & -3 \\ 2 & 0 \\ 6 & 5\end{array}\right]$ then find BA .
(4) Show that the function $f: R \rightarrow R$ defined by $f(x)=3 x^{3}+5, x \in R$ is a bijection .
(5) Determine the values of α, β, γ for which $A=\left[\begin{array}{ccc}0 & 2 \beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma\end{array}\right]$ is orthogonal matrix .
(6) Show that $A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary matrix .
(7) Prove that the characteristic roots of a Hermitian matrix are all real.
(8) What condition must b_{1}, b_{2}, b_{3} satisfy in order for $x_{1}+2 x_{2}+3 x_{3}=b_{1}, 2 x_{1}+5 x_{2}+3 x_{3}=b_{2}, x_{1}+8 x_{3}=b_{3}$ be consistent ?

Que. 3 (a) Prove that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}\left(\frac{\theta}{2}\right) \cos \left(\frac{n \theta}{2}\right)$.
(b) If $\tan (\theta+i \phi)=e^{i \alpha}$ then prove that $\theta=\left(n+\frac{1}{2}\right) \frac{\pi}{2}$ and $\phi=\frac{1}{2} \log \tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)$.

Que. 3 (c) State and prove De-Moivres theorem .
(d) Find all the values of $\left(\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)^{3 / 4}$. Also prove that the continued product of these values is 1 .

Que. 4 (a) Let X, Y, Z be any non empty sets and let f, g be one one mappings of X onto Y and Y onto Z respectively so that f and g are both invertible. Then prove that gof is also invertible and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
(b) Prove that every square matrix can be expressed in or a and only one way as the sum of a symmetric and skew-symmetric matrix.

OR

Que. 4 (c) Let A, B, C, D be sets .Suppose R is a relation from A to B, S is a relation from B to C and T is a relation from C to D . Then show that $(\operatorname{RoS}) \circ T=\operatorname{Ro}(S o T)$.
(d) If $A_{\alpha}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ then prove that $\left(A_{\alpha}\right)^{n}=\left[\begin{array}{cc}\cos n \alpha & \sin n \alpha \\ -\sin n \alpha & \cos n \alpha\end{array}\right]$, where n is any positive integer. Also prove that A_{α} and A_{β} commute and $A_{\alpha} A_{\beta}=A_{\alpha+\beta}$.
Que. 5 (a) Obtain the reduced row echelon form of the matrix $A=\left[\begin{array}{llll}1 & 3 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 8\end{array}\right]$ and hence find the rank of the matrix A .
(b) Find the inverse of $A=\left[\begin{array}{ccc}\frac{1}{5} & \frac{1}{5} & \frac{-2}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{5} & \frac{-4}{5} & \frac{1}{10}\end{array}\right]$ (by Gauss-Jordan Method)
(c) Reduce $A=\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$ to its normal form .

