V.P.& R.P.T.P.Science College, Vallabh Vidyanagar. B.Sc.(Semester - II) Internal Test US02CMTH21 (Algebra)

Que.3 (c) State and prove De-Moivres theorem .

(d) Find all the values of $\left(\frac{1}{2} + \frac{\sqrt{3}i}{2}\right)^{3/4}$. Also prove that the continued product of these values is 1. 4

Que.4 (a) Let X, Y, Z be any non empty sets and let f, g be one one mappings of X onto Y and Y onto Z respectively so that f and g are both invertible. Then prove that gof is also invertible and $(gof)^{-1} = f^{-1}og^{-1}$.

OR.

(b) Prove that every square matrix can be expressed in or e and only one way as the sum of a symmetric and skew-symmetric matrix.

OR

- Que.4 (c) Let A, B, C, D be sets .Suppose R is a relation from A to B, S is a relation from B to C and T is a relation from C to D. Then show that (RoS)oT = Ro(SoT).
 - (d) If $A_{\alpha} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ then prove that $(A_{\alpha})^n = \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix}$, where *n* is any positive integer. Also prove that A_{α} and A_{β} commute and $A_{\alpha}A_{\beta} = A_{\alpha+\beta}$.

Que.5 (a) Obtain the reduced row echelon form of the matrix $A = \begin{bmatrix} 1 & 3 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 8 \end{bmatrix}$ and hence find the rank

of the matrix A.

(b) Find the inverse of
$$A = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & \frac{-2}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{5} & \frac{-4}{5} & \frac{1}{10} \end{bmatrix}$$
 (by Gauss-Jordan Method) 4
Que.5 (c) Reduce $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$ to its normal form .
(d) Show that $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ is nilpotent matrix of order 3. 3

- Que.6 (a) Solve the system 2x + y + z = 0, 3x + 2y + 3z = 18, x + 4y + 9z = 16 (by Gauss Elimination Method)
 - (b) State and prove Cayley-Hamilton theorem.

OR

- Que.6 (c) Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and verify that it is satisfied by A and hence obtain A^{-1} .
 - (d) Find the characteristic roots and any one characteristic vector of $\begin{bmatrix} -4 & 8 & -12 \\ 6 & -6 & 12 \\ 6 & -8 & 14 \end{bmatrix}$.

4

4

5

4

5

4

5

3
