VP \& RPTP Science College
 Vallabh Vidyanagar
 BSc Examination [Semester: 1] 2018
 Subject: Physics Course: US01CPHY21
 Physics

Wednesday, Date 03-10-2018 Time: 12.30 pm to 2.30 pm
Total Marks: 50 INSTRUCTIONS:
1 Attempt all questions.
2 The symbols have their usual meaning.
3 Figures to the right indicate full marks.

Q-1 Multiple Choice Questions: [Attempt all]
(i)
(a) Quartz fibre
(b) Silver
(c) Putty
(d) Silicon
(ii) The depression produced in the free end of a cantilever is \qquad .
(a) $y=\frac{2 W L^{3}}{3 Y I_{g}}$
(b) $y=\frac{3 W L^{3}}{Y I_{g}}$
(c) $y=\frac{W L^{3}}{3 Y I_{g}}$
(d) $y=\frac{L W^{3}}{3 Y I_{g}}$
(iii) The sound waves having frequency between 20 Hz to 20 KHz are called \qquad waves.
(a) Infrasonic
(b) Ultrasonic
(c) Supersonic
(d) Audible
(iv) If we increase the length of simple pendulum, its time period will \qquad .
(a) Increase
(b) Decrease
(c) Not changed
(d) Becomes infinite
(v) How many number of independent node equations are required to analyze a network having three junction points and five branches?
(a) 2
(b) 5
(c) 3
(d) 6
(vi) Schering bridge is used to determine the unknown \qquad .
(a) Resistance
(b) Capacitance
(c) Reactance
(d) Inductance
(vii) The working principle of Jamin's interferometer is based on division of \qquad _.
(a) Amplitude
(b) Wavelength
(c) Frequency
(d) Wave front
(viii) The equation for resolving power of microscope is \qquad -
(a) $t \frac{d \mu}{d \lambda}$
(b) $n N$
(c) $\frac{1.22 \lambda}{2 \sin i}$
(d) $\frac{a}{1.22 \lambda}$

Q-2 Answer the following questions in short. (Attempt any Five)
(1) Define (i) elasticity and (ii) plasticity.
(2) Define (i) Young's modulus and (ii) Bulk modulus.
(3) Define (i) infrasonic and (ii) ultrasonic.
(4) Draw Kater's Reversible pendulum.
(5) Define: (i) Network, (ii) Junction

(6) Draw Diagram of dc bridge.
(7) Calculate the minimum number of lines in diffraction grating, which will just rešolve in the first order sodium lines of wavelength $5890 \AA$ and $5896 \AA$.
(8) What is grating? Write formula of resolving power of grating.

Q-3 Define Poisson's ratio (σ). Describe an experiment to determine Poisson's ratio of 8 a rubber tube and derive $\sigma=\frac{1}{2}\left(1-\frac{1}{A} \frac{d V}{d L}\right)$.

Q-3 Define modulus of rigidity (η). Describe dynamical method (Maxwell's vibrating 8 needle method) to determine modulus of rigidity of a thin wire and derive

$$
n=\frac{8 \pi 1 a^{2}\left(m_{2}-m_{1}\right)}{r^{4}\left(t_{2}^{2}-t_{1}^{2}\right)}
$$

Q-4 (a) Discuss the piezo-electric method for production of ultrasonic waves. 5
(b) Calculate the capacitance to produce ultrasonic waves of 10 MHz with an 3 inductance of 1 mH . $\left(\right.$ use: $\left.f=\frac{1}{2 \pi \sqrt{L C}}\right)$

OR
Q-4 (a) What is simple pendulum? Derive an expression for the periodic time of a simple 4 pendulum.
(b) Draw diagram of bar pendulum and explain how to determine g using bar 4 pendulum.

Q-5 (a) What is mesh? Explain mesh current analysis of two mesh network. 5
(b) What is superposition principle?

Q-5 (a) Write note on Maxwell Bridge.
(b) Three resistors, $R_{1}=10 \Omega, R_{2}=20 \Omega$ and $R_{3}=30 \Omega$ are connected in series with a battery of 10 V . Find the voltage drop across R_{2}.

Q-6 Write a note on Michelson Interferometer.

Q-6 What is Resolving Power? State Rayleigh's criteria for resolving power. Derive 8 resolving power of prism.

