

VP & RPTP Science College

Vallabh Vidyanagar

BSc Examination [Semester: I] 2018 Subject: Physics Course: US01CPHY21

Physics

1.0.0

2 sin i

We	dnesday,	Date 03-10-2018	Time: 12.30 pi	m to 2	.30 pm	Total Marks:	50
INST	RUCTIONS	:				1. 1.	
1	Attempt	all questions.					
2	The symbols have their usual meaning.						
0	r igures t	o the right indicate full f	Harks.				
Q-1	Multiple Choice Questions: [Attempt all]						00
(i)	is the nearly perfect elastic material						00
	(a)	Quartz fibre		(h)	Silver		
	(c)	Puttv		(d)	Silicon		
(ii)	The depression produced in the free end of a cantilever is						
	(a)	2WL ³		(h)	3WL ³		
		$y = \frac{1}{3Y I_g}$		(0)	$y = \frac{y_{I_g}}{y_{I_g}}$		
	(c)	WL ³		(d)	<i>LW</i> ³		
		$y = \frac{1}{3Y I_g}$		(4)	$y = \frac{2\pi}{3Y I_g}$		
(111)	The sound waves having frequency between 20 Hz to 20 KHz					ire called	
	waves.						
	(a) I	nfrasonic		(b)	Ultrasonic		
	(c) S	Supersonic		(d)	Audible		
(iv)	If we increase the length of simple pendulum, its time period will						
	(a) I	ncrease		(b)	Decrease	_	
	(c) N	lot changed		(d)	Becomes infinite		
(v)	How many number of independent node equations are required to a					nalyze a network	
	having three junction points and five branches?						
	(a) 2			(b)	5		
	(c) 3			(d)	6		
(vi)	Schering bridge is used to determine the unknown						
	(a) F	Resistance		(b)	Capacitance		
	(c) R	Reactance		(d)	Inductance		
(vii)	The working principle of Jamin's interferometer is based on division of						
	(a) A	mplitude		(b)	Wavelength		
	(c) F	requency		(d)	Wave front		
(viii)	The equation for resolving power of microscope is						
	(a) _t	$\frac{d\mu}{d\lambda}$		(b)	nN		
		22.2					
	(C) $\frac{1}{2}$.22 A		(d)			

1.22 X

8

Q-2 Answer the following questions in short. (Attempt any Five)

- (1) Define (i) elasticity and (ii) plasticity.
- (2) Define (i) Young's modulus and (ii) Bulk modulus.
- (3) Define (i) infrasonic and (ii) ultrasonic.
- (4) Draw Kater's Reversible pendulum.
- (5) Define: (i) Network, (ii) Junction
- (6) Draw Diagram of dc bridge.

Q-4

- (7) Calculate the minimum number of lines in diffraction grating, which will just resolve in the first order sodium lines of wavelength 5890 Å and 5896 Å.
- (8) What is grating? Write formula of resolving power of grating.
- Define Poisson's ratio (σ). Describe an experiment to determine Poisson's ratio of Q-3 8 a rubber tube and derive $\sigma = \frac{1}{2} \left(1 - \frac{1}{A} \frac{dV}{dL} \right)$.

OR

Define modulus of rigidity (n). Describe dynamical method (Maxwell's vibrating 8 Q-3 needle method) to determine modulus of rigidity of a thin wire and derive

(a) Discuss the piezo-electric method for production of ultrasonic waves.

$$\eta = \frac{8\pi l a^2 (m_2 - m_1)}{r^4 (t_2^2 - t_1^2)}.$$

- Calculate the capacitance to produce ultrasonic waves of 10 MHz with an 3 (b) inductance of 1mH. $\left(use: f = \frac{1}{2\pi\sqrt{LC}}\right)$ OR (a) What is simple pendulum? Derive an expression for the periodic time of a simple 4 Q-4 pendulum. (b) Draw diagram of bar pendulum and explain how to determine g using bar 4 pendulum. Q-5 (a) What is mesh? Explain mesh current analysis of two mesh network. 5 (b) What is superposition principle? 3 OR Q-5 (a) Write note on Maxwell Bridge. 5 (b) Three resistors, $R_1 = 10 \Omega$, $R_2 = 20 \Omega$ and $R_3 = 30 \Omega$ are connected in series with 3 a battery of 10 V. Find the voltage drop across R₂. Q-6 Write a note on Michelson Interferometer. 8 OR
- What is Resolving Power? State Rayleigh's criteria for resolving power. Derive 8 Q-6 resolving power of prism.

5