V.P. \& R.P.T.P. Science College, V.V.Nagar Internal Test: 2015-16
 Subject: Mathematics US02CMTH02 Max. Marks : 25 Matrix Algebra and Differential Equations
 Date: 19/03/2016
 Timing: $01.30 \mathrm{pm}-2.30 \mathrm{pm}$

Instructions: (1) This question paper contains FOUR questions.
(2) The figures to the right side indicate full marks of the corresponding question/s
(3) The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices,
[1] For a square matrix A over R the matrix $A-A^{\prime}$ is
[A] symmetric
[B] skew symmetric
[C] hermitian
[D] skew hermitian
[2] If 3 is a characterstic root of A then
$[\mathrm{A}]|I+3 A|=0$
[B] $|I-3 A|=0$
[C] $|A+3 I|=0$
[D] $|A-3 I|=0$
[3] For a square matrix A if $A X=2 X, X \neq O$ then
[A] X is characteristic root of A corresponding to 2
[B] A is characteristic root of X corresponding to 2

[C] A is characteristic vector of X corresponding to 2
[D] X is a characteristic vector of A corresponding to 2

Q: 2. Answer any TWO of the following.
[1] Define: (i) Skew-Hermitian Matrix (ii) Scalar Matrix
[2] Determine whether the matrix $\left[\begin{array}{ccc}7-4 i & 5-i & 1 \\ 4 i-1 & 6+i & 2-i \\ 3 & i-4 & 9+4 i\end{array}\right]$ is Skew-Hermitian or not.
[3] Find the characteristic equation of $\left[\begin{array}{ccc}4 & 1 & -2 \\ 1 & 0 & 2 \\ 0 & -1 & 5\end{array}\right]$
[4] Find the transpose of $D=\left[\begin{array}{ll}7 & 3 \\ 1 & 2\end{array}\right]$ and determine whether the transpose is an orthogonal matrix or not.

Q: 3 [A] Prove that every square matrix can be expressed in one and only one way as a sum of a Hermitian and a skew-Hermitian matrix.
[B] For $A=\left[\begin{array}{ccc}0 & 2 m & n \\ l & m & -n \\ l & -m & n\end{array}\right]$, where $l=\frac{1}{\sqrt{2}}, m=\frac{1}{\sqrt{6}}$ and $n=\frac{1}{\sqrt{3}}$ show that
$A A^{\prime}=I$

OR

Q: 3 [A] State and prove the reversal law for the transpose of product of matrices and deduce the reversal law for conjugate transpose of product of matrices.
[B] If $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, then find the values of α and β such that $(\alpha I+\beta A)^{2}=A \quad 4$
Q: 4 [A] If S is a real skew-symmetric matrix then prove that $I-S$ is non-singular and the matrix $A=(I+S)(I-S)^{-1}$ is orthogonal
[B] Verify Cayley-Hamilton theorem for the matrix $\left[\begin{array}{ccc}0 & 1 & 2 \\ 3 & -3 & 2 \\ 1 & 1 & -1\end{array}\right]$. Hence find its inverse if possible

OR

Q: 4 [A] State and prove Cayley-Hamilton theorem
[B] Find eigen values and any one of the eigen vectors of $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$

Page 2 of 2

