V.P. \& R.P.T.P. SCIENCE COLLEGE B.Sc. (SEMESTER - II) INTERNAL EXAMINATION

Time: 1:30 pm to $2: 30 \mathrm{pm}$

PHYSICAL CHEMISTRY: US02CCHE02
Date: 15-03-2016, Tuesday

Total Marks: 25

Q - 1: Choose the correct option from the following. (Multiple choice question)
(i) For exothermic reactions, ΔH is \qquad while for endothermic reactions it is \qquad
(a) positive, negative
(b) positive, positive
(c) negative, negative
(d) negative, positive
(ii) The sum of power to which the concentration of a substance appears in the rate expression is known as \qquad -.
(a) rate of reaction
(b) order of reaction w. r. to that substance
(c) overall order of reaction
(d) molecularity of reaction
(iii) Which of the following value is a slope for the plot of $\log \mathrm{k} \rightarrow 1 / \mathrm{T}$?
(a) $\mathrm{Ea} / 2.303 \mathrm{R}$
(b) R/2.303 Ea
(c) - $\mathrm{Ea} / 2.303 \mathrm{R}$
(d) $-2.303 \mathrm{Ea} / \mathrm{R}$
$Q-2$: Answer the following. (Any two)
(i) Show that $\Delta E=q_{v}$
(ii) Define: (1) isobaric process (2) intensive properties
(iii) Write mechanism and rate law of reaction: $2 \mathrm{Br}^{-}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2}=\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.
(iv) If concentration is measure in moles per liter and time in second then what is the unit of rate constant for first order and second order reaction.

Q-3 (a) Define work. Derive the expression for work associated with pressure volume change.
(b) For the reaction $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ at 298 K and 1 atm pressure, the heat of reaction is $-14.1 \mathrm{kcal} /$ mole then what is $\Delta \mathrm{E}$ of the reaction. Given: $\mathrm{R}=1.987 \mathrm{cal}$.

OR

Q-3 (a) Define standard enthalpy change. Derive Kirchoff's equation.
(b) Using Hess' law, calculate the standard heat of formation of carbon monoxide.
(i) $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}, \quad \Delta \mathrm{H}^{\circ}{ }_{298}=-94.05 \mathrm{Kcal} \mathrm{mole}^{-1}$
(ii) $\mathrm{CO}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}, \quad \Delta \mathrm{H}^{\circ}{ }_{298}=-67.6 \mathrm{Kcal} \mathrm{mole}^{-1}$

Q-4 (a) Derive the integrated rate law for first order reaction. Write its characteristics also.
(b) State and explain the principle of detailed balancing for single-step reaction.

OR

$\mathrm{Q}-4$ (a) For the reaction between gaseous chlorine and nitric oxide, $2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}$
It is found that doubling the concrutiation of both reactants, increases the rate by a factor of eight, but doubling the chlorine concentration alone only doubles the rate. What is the order of reaction with respect to nitric oxide and chlorine?
(b) "The mechanism of a reaction may change if the conditions under which it is run are altered." Explain giving suitable example.

