V.P. & R.P.T.P. Science College, V.V. Nagar

Internal Test: 2015-16

Subject: Mathematics

US01CMTH02

Max. Marks: 25

Calculus and Differential Equations

Date: 09/10/2015

Timing: 01:30 pm - 02:30 pm

Instructions: (1) This question paper contains 5 questions.

- (2) The figures to the right side indicate full marks of the corresponding question/s
- (3) The symbols used in the paper have their usual meaning, unless specified.

- [1] If $y = \sin 3x$ then $y_{10} =$ [A] $3^{10} \sin 3x$ [B] $-3^{10} \sin 3x$
- [C] $3^{10}\cos 3x$ [D] $-3^{10}\cos 3x$
- [2] For $r = f(\theta)$ which of the following is not true?

[A]
$$\frac{ds}{d\theta} = \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}$$
 [B]
$$\tan \phi = \frac{r}{r_1}$$

[C]
$$\rho = \frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2}$$
 [D]
$$\frac{ds}{d\theta} = \sqrt{1 + \left(\frac{dr}{d\theta}\right)^2}$$

[C]
$$\rho = \frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2}$$

$$[D] \quad \frac{ds}{d\theta} = \sqrt{1 + \left(\frac{dr}{d\theta}\right)^2}$$

[3] If a function y of x be implicitly described by f(x,y) = c, where c is a constant then [A] $\frac{dy}{dx} = -\frac{f_y}{f_x}$ [B] $\frac{dy}{dx} = \frac{f_y}{f_x}$ [C] $\frac{dy}{dx} = \frac{f_x}{f_y}$ [D] $\frac{dy}{dx} = -\frac{f_x}{f_y}$

[A]
$$\frac{dy}{dx} = -\frac{f_y}{f_x}$$

$$[B] \frac{dy}{dx} = \frac{f_y}{f_x}$$

[C]
$$\frac{dy}{dx} = \frac{f_x}{f_y}$$

$$[D] \frac{dy}{dx} = -\frac{f_x}{f_y}$$

Answer any TWO of the following. Q: 2.

4

- [1] If $y = \log(2x 1)$ then find y_4
- [2] Define: (i) Average Curvature (ii) Intrinsic Equation
- [3] Determine whether $f(x,y) = \frac{\sqrt[4]{x} \sqrt[4]{y}}{x^2 u^2}$ is a homogeneous function or not.

Q: 3 [A] Find
$$y_n$$
 for $y = e^{2x} \cos x \sin^2 2x$

3

[B] If
$$y = e^{ax} \cos(bx + c)$$
, then prove that $y_n = r^n e^{ax} \cos(bx + c + n\varphi)$, where $r = \sqrt{a^2 + b^2}$, $\varphi = \tan^{-1}\left(\frac{b}{a}\right)$

3

OR

Q: 3. If
$$y = (x - \sqrt{4 + x^2})^m$$
, then find $y_n(0)$

6

Q: 4. Define radius of curvature. Let $r = f(\theta)$ be a polar form of a curve with a point P on it. Then prove that the radius of curvature at P is given by

$$\rho = \frac{(r^2 + r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2},$$

where
$$r_1 = f'(\theta)$$
 and $r_2 = f''(\theta)$

6

OR

Q: 4 [A] Show that the intrinsic equation of the curve $y^3 = ax^2$, is $27s = 8a(\sec^3\psi - 1)$

3

[B] Prove that the length of the curve $x^{2/3}+y^{2/3}=a^{2/3}$ measured from (0,a) to the point (x,y) is given by $\frac{3}{2}(ax^2)^{1/3}$

Define a homogeneous function. Also state and prove the Euler's theorem for functions of three variables.

6

3

OR

Q: 5 [A] If $z = xyf(\frac{y}{x})$ and z is constant, then show that

$$\frac{f'(\frac{y}{x})}{f(\frac{y}{x})} = \frac{x[y + x\frac{dy}{dx}]}{y[y - x\frac{dy}{dx}]}.$$

3

[B] If H = f(2x - 3y, 3y - 4z, 4z - 2x), then prove that

$$\frac{1}{2}\frac{\partial H}{\partial x} + \frac{1}{3}\frac{\partial H}{\partial y} + \frac{1}{4}\frac{\partial H}{\partial z} = 0.$$

3