V.P.\& R.P.T.P.Science College,Vallabh Vidyanagar.
 Internal Test
 B.Sc. Semester - I
 US01CMTH01
 (ANALYTIC GEOMETRY AND COMPLEX NUMBERS)

Date. 8/10/2015 ; Thursday 1.30 p.m. to 2.30 p.m. Maximum Marks: 25

Que. 1 Fill in the blanks.
(1) Parametric equation for $x^{2 / 3}-y^{2 / 3}=a^{2 / 3}$ are
(a) $x=a \cos ^{3} \theta ; y=a \sin ^{3} \theta$
(b) $x=a \sec ^{3} \theta ; y=a \tan ^{3} \theta$
(c) $x=\cos ^{3} \theta ; y=\sin ^{3} \theta$
(d) $x=a \tan ^{3} \theta ; y=a \sec ^{3} \theta$
(2) Polar equation of vertical line through the point $\left(-3,180^{\circ}\right)$ is \qquad
(a) $3=r \cos \theta$
(b) $3=r \sin \theta$
(c) $3=-r \sin \theta$
(d) $3=-r \cos \theta$

(3) For $z=1+\cos \alpha+i \sin \alpha$, amp $z=$
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{2}-\frac{\alpha}{2}$
(c) $\frac{\alpha}{2}$
(d) $\frac{\pi}{2}+\frac{\alpha}{2}$

Que. 2 Answer the following (Any Two)
(1) Find any one oblique asymptote, for the curve given by $x=t+\frac{1}{t^{2}} ; y=t-\frac{1}{t^{2}}$.
(2) If $\sin \alpha+\sin \beta+\sin \gamma=\cos \alpha+\cos \beta+\cos \gamma=0$ then prove that
$\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$
(3) Find polar equation of circle centre at $\left(5,210^{\circ}\right)$ and radius is 2 .

Que. 3 (a) If a curve is given by $x=f(t) ; y=g(t)$ and that both x and y. get numerically large as t approaches some number, say a. Then an oblique asymptote to the curve, if it exist, is given by $y=m x+c$, where $m=\lim _{t \rightarrow a} \frac{d y}{d x}$ and $c=\lim _{t \rightarrow a}(y-m x)$.
(b) A circle of radius a rolls along a line without sliding. Show that the path traced by a point on the radius b units $(b<a)$ from the centre is given by $x=a \theta-b \sin \theta ; y=a-b \cos \theta$.

OR
Que. 3 (a) Sketch the curve given by $y=\frac{(x-1)(x+2)}{x(x+4)}$.
(b) Determine the extent for the curve given by $x=4 t^{2}-4 t ; y=1-4 t^{2}$. 1

Que. 4 (a) In usual notation prove that $r=\frac{p e}{1 \pm e \sin \theta}$.
(b) Find the perpendicular distance of $4=r(\cos \theta-\sin \theta)$ from the pole.

OR

Que. 4 (a) Prove that equation of line not passing through the pole is $p=r \cos (\theta-\omega)$, where (p, ω) is the foot of the perpendicular from the pole. Also find equation of horizontal line.
(b) If any straight line through the pole meets the circle $r^{2}-2 r d \cos (\theta-\alpha)+d^{2}-a^{2}=0$ at point P and Q . Then prove that $O P \cdot O Q=d^{2}-a^{2}$.
Que. 5 (a) State and prove De-Moivre's theorem.
(b) Find the modulus of $\frac{(3+\sqrt{2} i)^{2}}{1+3 i}$.

OR
Que. 5 (a) Express $\frac{\sin 6 \theta}{\sin \theta}$ as a polynomial in $\cos \theta$.
(b) Expand $\cos ^{8} \theta$ in a series of cosines of multiples of θ.

