V.P.& R.P.T.P.Science College,Vallabh Vidyanagar. Internal Test B.Sc. Semester - I US01CMTH01

(ANALYTIC GEOMETRY AND COMPLEX NUMBERS)

Date. 8/10/2015 ; Thursday 1.30 p.m. to 2.30 p.m. Maximum Marks: 25 Que.1 Fill in the blanks. 3 (1) Parametric equation for $x^{2/3} - y^{2/3} = a^{2/3}$ are (a) $x = a \cos^3 \theta$; $y = a \sin^3 \theta$ (b) $x = a \sec^3 \theta$; $y = a \tan^3 \theta$ (c) $x = \cos^3 \theta$; $y = \sin^3 \theta$ (d) $x = a \tan^3 \theta$; $y = a \sec^3 \theta$ LIBRA (2) Polar equation of vertical line through the point $(-3, 180^0)$ is (a) $3 = r \cos \theta$ (b) $3 = r \sin \theta$ (c) $3 = -r \sin \theta$ (d) $3 = -r \cos \theta$ (3) For $z = 1 + \cos \alpha + i \sin \alpha$, amp $z = \dots$ (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{2} - \frac{\alpha}{2}$ (c) $\frac{\alpha}{2}$ (d) $\frac{\pi}{2} + \frac{\alpha}{2}$ Que.2 Answer the following (Any Two) 4 (1) Find any one oblique asymptote , for the curve given by $x = t + \frac{1}{t^2}$; $y = t - \frac{1}{t^2}$ (2) If $sin\alpha + sin\beta + sin\gamma = cos\alpha + cos\beta + cos\gamma = 0$ then prove that $sin3\alpha + sin3\beta + sin3\gamma = 3sin(\alpha + \beta + \gamma)$ (3) Find polar equation of circle centre at $(5, 210^0)$ and radius is 2. Que.3 (a) If a curve is given by x = f(t); y = g(t) and that both x and y get numerically large as t approaches some number, say a. Then an oblique asymptote to the curve, if it exist, is given by y = mx + c, where $m = \lim_{t \to a} \frac{dy}{dx}$ and $c = \lim_{t \to a} (y - mx)$. 3 (b) A circle of radius a rolls along a line without sliding. Show that the path traced by a point on the radius b units (b < a) from the centre is given by $x = a\theta - b\sin\theta$; $y = a - b\cos\theta$. 3 Que.3 (a) Sketch the curve given by $y = \frac{(x-1)(x+2)}{x(x+4)}$. 5 (b) Determine the extent for the curve given by $x = 4t^2 - 4t$; $y = 1 - 4t^2$. 1 Que.4 (a) In usual notation prove that $r = \frac{p e}{1 \pm e \sin \theta}$. 5 1 (b) Find the perpendicular distance of $4 = r(\cos\theta - \sin\theta)$ from the pole. OR. Que.4 (a) Prove that equation of line not passing through the pole is $p = rcos(\theta - \omega)$, where (p, ω) is the foot of the perpendicular from the pole. Also find equation of horizontal line. 3 (b) If any straight line through the pole meets the circle $r^2 - 2rd\cos(\theta - \alpha) + d^2 - a^2 = 0$ at point P and Q.Then prove that $OP \cdot OQ = d^2 - a^2$. 3 Que.5 (a) State and prove De-Moivre's theorem . 5 (b) Find the modulus of $\frac{(3+\sqrt{2}i)^2}{1+3i}$ 1 OR Que.5 (a) Express $\frac{\sin 6\theta}{\sin \theta}$ as a polynomial in $\cos \theta$. 3 (b) Expand $\cos^8\theta$ in a series of cosines of multiples of θ . 3 ****