V.P. 2 R.P.T.P. Science College,V.V.Nagar

Internal Test: 2014-15
Subject: Mathematics US02CMTH02 Max. Marks: 25
Matrix Algebra and Differential Equations.
Date: 19/03/2015
Timing: $12.30 \mathrm{pm}-1.30 \mathrm{pm}$

Instructions: (1) This question paper contains FOUR questions
(2) The figures to the right side indicate full marks of the corresponding question/s
(3) The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.
[1] If $P=\left[\begin{array}{cc}4 & -1 \\ 3 & 5\end{array}\right]$ then $P P^{\prime}=$
[A] $\left[\begin{array}{cc}17 & 7 \\ 7 & 34\end{array}\right]$
[B] $\left[\begin{array}{cc}-17 & 7 \\ 7 & -34\end{array}\right]$
$[C]\left[\begin{array}{cc}7 & 34 \\ 17 & 7\end{array}\right]$
[D] I
[2] Matrix $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 0 \\ 4 & 0 & 1\end{array}\right]$ is a
[A] scalar matrix
[B] diagonal matrix
[C] symmetric matrix
[D] skew-symmetric matrix

[3] A square matrix A is said to be an orthogonal matrix if
[A] $A A^{\prime}=I$
[B] $A A^{\theta}=I$
[C] $A A^{-1}=I$
[D] $A=A^{\prime}$

Q: 2. Answer any TWO of the following.
[1] Define: (i) Column Matrix (ii) Hermitian Matrix
[2] If A is Hermitian then prove that $B^{\theta} A B$ is Hermitian
[3] Find the characteristic equation of $\left[\begin{array}{lll}5 & 1 & 1 \\ 2 & 4 & 1 \\ 1 & 4 & 1\end{array}\right]$
[4] Find the characteristic roots of $\left[\begin{array}{ll}5 & 8 \\ 1 & 9\end{array}\right]$
Q: 3 [A] Prove that every square matrix can be expressed in one and only one way as $P+i Q$, where P and Q are Hermitian matrices.
[B] If $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, then find the valucs of α and β such that $(\alpha I+\beta A)^{2}=A$

Q: 3 [A] Prove that every square matrix can be expressed in one and only one way as a sum of a symmetric anid a skew-symmetric matrix.
[B] State and prove associative law for product of matrices
Q: 4 [A] State and prove Cayley-Hamilton theorem
[B] Find the characteristic roots and any one of the characteristic vectors of:
$\left[\begin{array}{ccc}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$

OR

Q: 4 [A] Show that the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ satisfies Cayley-Hamilton theorem. Hence or otherwise obtain A^{-1}.
[B] Prove that every orthogonal matrix A can be expressed as $A=(I+S)(I-S)^{-1}$ by a suitable choice of real skew-symmetric matrix S provided that -1 is not a characteristic root of A

