V.P. \& R.P.T.P. Science College, V.V.Nagar Internal Test: 2014-15

Subject: Mathematics US01CMTH02
Max. Marks : 25 Calculus and Differential Equations
Date: 08/12/2014
Timing: 11:00 am - 12:00 pm

Instructions: (1) This question paper contains FIVE QUESTIONS
(2) The figures to the right side indicate full marks of the corresponding question/s
(3) The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.
[1] Leibniz's theorem can be applied to a product of two functions which are sufficiently many times
[A] differentiable
[B] continuous
[C] integrable
[D] none of these
[2] At a point on a curve, with non zero curvature, the radius of curvature and the curvature are
[A] Additive inverses of each other
[B] Multiplicative inverses of each other
[C] equal
[D] none
[3] The degree of the homogeneous function $f(x, y)=\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{x}{y}\right)$ is
[A] 0
[B] 1
[C] -1
[D] undefined

Q: 2. Answer any TWO of the following.
[1] If $y=\sin 4 x$ then find y_{4}
[2] Prove that if ρ is the radius of curvature at any point P of the parabola $y^{2}=4 a x$ and S is its focus then prove that $\rho^{2} \propto S P^{3}$
[3] Verify Euler's theorem for the function $z=\sin ^{-1} \frac{x}{y}$
Q: 3. State and prove Leibniz's theorem

Q: 3 [A] Find y_{n} for $y=e^{2 x} \cos x \sin ^{2} 2 x$

[B] Find the angle between radius vector and tangent at a point on the curve: $r^{m}=a^{m}(\cos m \theta+\sin m \theta)$

Q:4. For a polar equation $r=f(\theta)$ of a curve, prove that

$$
\frac{d s}{d \theta}=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}
$$

OR

Q: 4. For the curve $r=a(1-\cos \theta)$, prove that $\rho^{2} \propto r$. Also prove that if ρ_{1} and ρ_{2} are radii of the curvature at the ends of a chord through the pole, $\rho_{1}^{2}+\rho_{2}^{2}=\frac{16 a^{2}}{9}$

Q: 5. Define a homogeneous function and state and prove Euler's theorem for function of three variable

OR

Q: 5 [A] If $H=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$, then prove that

$$
\frac{1}{2} \frac{\partial H}{\partial x}+\frac{1}{3} \frac{\partial H}{\partial y}+\frac{1}{4} \frac{\partial H}{\partial z}=0 .
$$

[B] If $u=\sin ^{-1}\left(\frac{x^{2} y^{2}}{x+y}\right)$, then prove that $\quad x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 \tan u$ 3

