V.P.\& R.P.T.P.Science College.Vallabh Vidyanagar.
 Internal Test
 B.Sc. Semester - I
 US01CMTH01
 (ANALYTIC GEOMETRY AND COMPLEX NUMBERS)

Dt.6/12/2014 Saturday, $\quad 11.00$ a.m. to 12.00 a.m. Maximum Marks: 25
Que. 1 Fill in the blanks.
(1) Asymptotes of $y=\frac{2}{(x-1)(x+2)}$ are
(a) $x=1,-2 ; y=0$ (b) $x=-1,2 ; y=0$ (c) $x=1,2 ; y=1$ (d) not possible.
(2) Polar equation of circle with centre on polar axis and right to the pole at distance a is
\qquad
(a) $r=2 a \cdot \cos \theta$
(b) $r=2 a \sin \theta$
(c) $r=-2 a \sin \theta$
(d) $r=-2 a \cos \theta$
(3) Modulus of $\frac{(3-\sqrt{2} i)^{2}}{(1+2 i)^{2}}$ is \qquad
(a) $\frac{11}{\sqrt{5}}$
(b) $\frac{11}{5}$
(c) $\frac{7}{5}$
(d) $\frac{13}{\sqrt{5}}$

Que. 2 Answer the following (Any Two)
(1) Find tangent parallel to axes for the curve $x=\cos ^{2} \theta ; y=2 \sin \theta$.

(2) Find the polar equation of conic if directrix passes through the point $(5, \pi / 2)$ and $e=2 / 3$.
(3) Reduce $1-\cos \alpha+i \sin \alpha$ in modulus-amplitude form .

Que. 3 (a) If a curve is given by $x=f(t) ; y=g(t)$ and that both x and y get numerically large as t approaches some number, say a. Then an oblique asymptote to the curve, if it exist, is given by $y=m x+c$, where $m=\lim _{t \rightarrow a} \frac{d y}{d x}$ and $c=\lim _{t \rightarrow a}(y-m x)$.
(b) Find parametric equation of circle .

OR

Que. 3 (a) Find Symmetry, asymptotes and sign of function for the curve $y=\frac{2}{(x+1)(x-2)}$. 3
(b) Obtain parametric equation of cycloid.

Que. 4 (a) In usual notation prove that $r=\frac{p e}{1 \pm e \cos \theta}$.
(b) Find centre and radius of the circle $r=-9 \sin \theta$.

OR

Que. 4 (a) Prove that polar equation of circle with centre $\left(r_{1}, \theta_{1}\right)$ and radius a is given by $r^{2}+r_{1}^{2}-2 r r_{1} \cos \left(\theta-\theta_{1}\right)=a^{2}$.
(b) Identify the curve $r=1+\cos \theta$. Also find its reciprocal curve . Sketch reciprocal curve. 3

Que. 5 (a) State and prove De-Moivres theorem.
(b) Express $\left(\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)^{3}$ in polar form and simplify it

OR
Que. 5 (a) Solve $x^{4}-x^{3}+x^{2}-x+1=0$ by using De Moivre's theorem.
(b) Prove that $\cos 6 \theta=32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1$.

