517	S	EAT No		No. of printed pa	ages:02
L1=	5	SARDAR PATEL B.Sc. (6 th - Semester Code No. US06CPHY21: [UNIVE) Exam Quantu	RSITY ination m Mechanics]	
Date: 04-04-2022, Monday Time: 3:00					5:00 p.m.
Note: (i) All the symbols have their usual meanings					arks: 70
	(ii) Fi	gures at the right side of questions indic	ate full 1	narks	
					1
Q.1	Multi	iple Choice Questions (Attempt All)			[10]
	(1) For $E > 0$, the particle has a kinetic energy				
		(a) zero	(b)	positive	
		(c) negative	(d)	infinity	
	(2) Any particle with energy cannot enter in the regions I and III			the regions I and III	
		(a) $E = 0$	(b)	$E = \propto$	
		(c) $E < 0$	(d)	E > 0	
	(3)	If the particle moving in a poten	tial then	the solution of the wave equation i	\$
		described as a stationary state			
		(a) time independent	(b)	time dependent	
		(c) velocity dependent	(d)	velocity independent	
	(4)	For adjoint operator A, $(\phi, A\psi) =$	()	, see the second s	
		(a) $(\phi^*, A\psi)$	(b)	$(A^+\emptyset, \psi)$ (A^+\emptyset, ψ)	

(b) $(A^+ \emptyset, \psi)$

(d) $(A \phi, \psi)$

(a) always 0 (b) infinite (c) real (d) imaginary (6) If $\delta_{m,n}$ is Kronecker delta function then $\delta_{m,n} = 1$ when (a) m = n(b) m > n(c) m < n(d) $m \neq n$ (7)If A & B are a canonically conjugate pair of operator, then [A, B] =(a) $i\hbar/2$ (b) *i*ħ (c) *T*i (d) 2iħ (8)Force acting on the pendulum is proportional to (a) velocity (b) time (c) displacement (d) acceleration (9)In a rigid rotator distance between two particles is (a) constant (b) zero (c) infinite (d) variable

(10) Energy of an isotropic oscillator is (b) discrete (a) continues (c) zero (d) infinity

Q.2 Filling the blanks and True-False

(c) $(\phi, A\psi)$

Eigen values of a self adjoint operator is

(5)

- (1)Any wave function having symmetry property is said to be of odd parity (True/False)
- (2)The limit of a region-III for a square well potential is
- (3)If A and B are non-commutative self-adjoint operators then $(AB)^{\dagger} = BA$ (True/False)
- (4)The value of constant of integration for δ function normalized momentum eigen function is
- (5)The same state of all the components of \vec{L} operator is possible (True/False)

[08]

LIBRAR

V. Nac

P.T.O.

- (6) The ground state energy for simple harmonic oscillator is E =
- (7) The H- atom is a two-particle system (True/False)
- (8) Angular momentum is defined as L =

Q.3 Short Questions (Attempt any Ten)

- (1) Define square well potential.
- (2) Write the admissible solution for a particle in a square well potential.
- (3) What is the condition of the total probability of the wave function?
- (4) Define adjoint and self-adjoint operator.
- (5) What is Dirac delta function?
- (6) Define degenerate and non-degenerate eigen values.
- (7) Define simple harmonic oscillator.
- (8) Define Bosons and Fermions .
- (9) Write the Hamiltonian for interacting and non-interacting systems.
- (10) Write down expression for ∇^2 in spherical polar coordinates.
- (11) What is rigid rotator? State the expression for its energy level separation.
- (12) What is isotropic oscillator? Write the expression for its energy.

Q.4 Long Questions (Attempt any four) All questions carry equal marks

- (1) Derive the time independent Schrodinger equation and find its solution. Also state the physical significance.
- (2) Using the admissible solutions derive the equation of energy eigen values for a particle in a square well potential.
- (3) Discuss the fundamental postulates of wave mechanics with properties.
- (4) Derive eigen function in momentum space and normalized it by δ function normalization method ${\boldsymbol \cdot}$
- (5) State uncertainty principle and prove it for any pair of quantum mechanical observables
- (6) Derive the expression of energy eigen value of simple harmonic oscillator
- (7) Derive the expression of angular momentum operator L² in terms of spherical polar coordinates
- (8) Derive the radial wave equation for H-atom

1

[20]

[32]