

SARDAR PATEL UNIVERSITY
B.Sc. SEM :6, APRIL : 2022

MATHEMATICS, USO6CMTH24
No. of Printed Pages : 02

Max. Marks: 70
Q. 1 Choose the correct option for each of the following.
(1) If P is a partition of $[a, b]$ then
(a) $\mathrm{a} \in \mathrm{P}$, but $\mathrm{b} \notin \mathrm{P}(\mathrm{b}) \mathrm{a} \notin \mathrm{P}$, but $\mathrm{b} \notin \mathrm{P}(\mathrm{c}) \mathrm{a} \notin \mathrm{P}$, but $\mathrm{b} \in \mathrm{P}(\mathrm{d}) \mathrm{a} \in \mathrm{P}$, but $\mathrm{b} \in \mathrm{P}$
(2) $\int_{a}^{-b} f(x) d x=$ \qquad
(a) $\operatorname{Sup}(U(P, f))$
(b) $\operatorname{Sup}(L(P, f))$
(d) $\ln f(U(P, f))$
(d) $\operatorname{Inf}(L(P, f))$

(3) If μ is a mesh of the partition $P=\left\{x_{0}, x_{1}, \ldots \ldots, x_{n}\right\}$ for $[a, b]$ then..... for every $i=1,2, \ldots, n$
(a) $\Delta x i=\mu$
(b) $\quad \Delta x i<\mu$
(c) $\Delta x i>\mu$
(ब) $\Delta x i \leq \mu$
(4) If P, P^{*} are any two partitions of $[a, b]$ then $\left|S(P, f)=S\left(P^{*}, f\right)\right|$ \qquad ε
(a) $=$
(b)
$<$
(c) $>$
(d) \geq
(5) A function f cannot be integrable over $[a, b]$, if it is.....
(a) Increasing over $[a, b]$
(b) Decreasing over $[a, b]$
(e) Continuous over $[a, b]$
(d) none of these
(6) The Reimann Sum of a bounded f on $[a, b]$ w.r.to a Partitbn P is denoted by \qquad
(a) $\quad U(P, f)$
(b) $L(P, f)$
(c) $S(P, f)$
(d) none of these
(7) $\int_{0}^{1} \frac{\sin x}{x} d x$ is \qquad integral.
(a) finite
(b) infinite
(c) proper
(d) improper
(8) $\int_{0}^{1} \frac{\log x}{\sqrt{x}} d x$ is \qquad
(a) convergent
(b) divergent
(c) infinite
(d) none of these
(9) The values of series $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+$ \qquad $=.$.
(a) $\frac{2}{3}$
(b) $\frac{3}{2}$
(c) $\frac{-3}{2}$
(d) none of these
(10) The sequence $\left\{\frac{n x}{1+n^{3} x^{2}}\right\}$ converges uniformly to , for $0 \leq x \leq 1$.
(ब) 0
(b)
$\frac{1}{2}$
(c) 1
(d) none of these

Q. 2 Do as directed.

(1) True or False : $\int_{-a}^{b} f(x) d x \leq \int_{a}^{-b} f(x) d x$.
(2) If $P=\left\{-2,-1, \frac{-1}{2}, 0, \frac{1}{2}, \frac{3}{4}, 1, \frac{3}{2}, 2\right\}$ is a partition of $[-2,2]$ then $\mu(P)=, \ldots$
(3) $\int_{0}^{3}[x] d x=\ldots$
(4) True or False : A bounded function f having a finite number of points of discontinuity on $[a, b]$ is always integrable on $[a, b]$.
(5) True or False: $\int_{0}^{2} \frac{1}{2 x-x^{2}} d x$ integral diverges.
(6) $\int_{0}^{\frac{\pi}{2}} \log \sin x d x=\ldots \ldots \ldots$
(7) Tyue or False: The series $\sum_{1}^{\infty} \frac{x}{n\left(1+n x^{2}\right)}$ converges uniformly for all real x.
(8) True or False : The sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=n x e^{-n x^{2}} ; n=1,2,3 \ldots$.... Converges pointwise to zero on [0,1].
Q. 3 Attempt any TEN.
(1) For a bounded function $f(x)=x^{2}, x \in[-1,2]$ and a partition $P=\left\{-1,-\frac{1}{2}, 0,1,2\right\}$ of $[-1,2]$ then find $L(P, f)$.
(2) Define: The Upper Riemann sum of a bounded function.
(3) In usual notation, prove that $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a), a \leq b$.
(4) Define: Riemann integral (Second form).
(5) State First mean value theorem of differential Calculus.
(6) State the second Fundamental theorem of integral calculus.
(7) Define : Improper integral.
(8) Examine the convergence of $\int_{0}^{1} \frac{d x}{x^{2}}$.

(9) Examine the convergence of $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{3}}}$.
(10) Define : Uniform convergence on an interval.
(11) State Able's test.
(12) Prove that the sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=\frac{1}{x+n}$ is uniformly convergent in $[0, \mathrm{~b}], \mathrm{b}>0$.

Q. 4 Attempt any FOUR.

(1) State and Prove Darboux's theorem.
(2) If f is bounded and integrable function on $[a, b]$ and c is any constant then prove that $c f$ Is also integrable on $[\mathrm{a}, \mathrm{b}]$ and $\int_{a}^{b} c f d x=c \int_{a}^{b} f d x$.
(3) If a function f is continuous on $[a, b]$ then prove that f is integrable on $[a, b]$.
(4) State and Prove the First Fundamental theorem of integral calculus.
(5) State and Prove the comparison test-11 for convergence of an improper integral.
(6) State and Prove that Cauchy's Test for convergence of improper integral.
(7) State and Prove Weistrass's M - Test.
(8) Let $\left\{f_{n}\right\}$ be a sequence of functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x), x \in[a, b]$ and $M_{n}=\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|$ then prove that $f_{n} \rightarrow f$ uniformly on $[a, b]$ if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.

