September 1	1	- Secure
-	11	20
/	Lt	de
- Same	tonger o	-

Sardar	Patel	Universi	ty, Valla	abh	Vidyanagar
E	3.Sc Se	mester-VI:	Examination	ons:	2021-22

Subject: Mathematics

US06CMTH23 Linear Algebra

Max. Marks: 70

LIBRARY

Date: 06/04/2022, Wedneday Timing: 03.00 pm - 05.00 pm						
Instr	uction : The symbo	ols used in the paper have t	their usual meaning, unless	specified.		
Q: 1.	Answer the follow	wing by choosing correct	answers from given choice	28.		
[1]	Any two generati [A] no common e none	ing sets of a vector space lements [B] all different	must haveelements [C] same num	aber of elements [D]		
[2]	If a vector space [A] = 3	V with dimension n containing [B] < 3	ins 3 linearly independent [C] > 3	ts vectors then n [D] $\geqslant 3$		
[3]	If B_1 and B_2 are [A] $m > n$	two bases for a vector sp [B] $m < n$	ace with dimensions m an $[C]$ $m = n$	and n then $[D] m + n = 0$		
[4]	R^3 and R^2 are to $T: R^3 \to R^2$ and $[A] =$	wo real vector spaces, N $v_1 \neq v_2$ then $T(v_1) = T(v_1)$ [B] <	$\Gamma(T)$ is null space for a l (v_2) $[C] >$	inear transformation $[D] \neq$		
[5]	If V_1 and V_2 are t [A] 2	wo vector spaces with dir [B] 4	mensions 2 and 4 then $L($ [C] 8			
	If V and V' are very $T: V \to V'$ can be [A] $F = F'$	ctor spaces over fields F at e defined only if [B] $F \subset F'$	and F' respectively then a left $[C]$ $F' \subset F$	inear transformation $[\mathbf{D}]\ V = V'$		
	linear transformut	$\{u_1, u_2\}$ be two basis of vertion such that $T(v_1) = 2u$ is	ector space V_2 respectively $u_1 + 3u_2$ and $T(v_2) = u_1 - $ $[C] \begin{bmatrix} -2 & 2 \\ 1 & 3 \end{bmatrix}$	7. If $T: V_2 \to V_2$ is a $2u_2$ then the matrix $[D] \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$		
[8]	Rank of the matri		[C] 2	, [D] 3		
	If A is an orthogo $u_1, u_2, u_3 \in A$ $[A] <$	nal subset of an inner pro $[B] >$	oduct space then $u_1.u_2 -$ $[C] \leqslant$	and Variable to		
[10]			$aat \ u \neq v \text{ then } \ u\ = \ v\ $ $[C] = \frac{\ v\ }{\ v\ }$			

Q: 2. In the following, depending on the type of question either fill in the blank or answer whether a statement is true false

- [1] If dimension of a vector space is 10 then it cannot contain more than 10 linearly independent vectors. (True/False?)
- [2] A subspace of a vector space is not necessarily an abelian group.(True/False?)
- [3] If T is a linear transformation on a vector space with dimension 8 and nullity of T is 2 then its rank is 4. (True/False?)
- [4] If T is a linear map then for a scalar α the map $\alpha^2 T$ is also a linear map. (True/False?)
- [5] Dimensions of real vector spaces $M_{3\times4}$ and $M_{2\times6}$ are equal. (True/False)
- [6] A matrix associated with a linear transformation $T:U\to V$ depends on the basis of vector spaces U and V used to represent T. (True/False)
- [7] If V is an inner product space then V is an abelian group also. (True/False?)
- [8] Every finite dimensional inner product space has an orthogonal basis. (True/False)?
- Q: 3. Answer TEN of the following.

20

P. Scie

LIBRAR

V. Na

- [1] Define Real Vector Space
- [2] In any vector space prove that $\alpha u = \overline{0}$ iff either $\alpha = 0$ or $u = \overline{0}$.
- [3] Define (1) Subspace of a vector space. (2) Span.
- [4] Examine whether $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(x,y) = (x,y,0) is a linear map.
- [5] If $T: \mathbb{R}^3 \to \mathbb{R}^4$ is a one-one linear map then find the nullity of T.
- [6] Define (1) Nullity of a linear transformation (2) Non-Singular Linear Map.
- [7] Define Matrix Associated with a linear Transformation
- [8] Prove that the columns of a square matrix are LI iff rows of the matrix are LI.
- [9] Find the nullity of $\begin{bmatrix} 3 & -4 \\ 4 & 2 \end{bmatrix}$
- [10] Define (1) Orthogonal set of vectors (2) Projection of a vector
- [11] Let V be a real inner product space, u, v and w be any three vectors in V and α a scalar. Then prove the following.
 - (i) (u+v).w = u.w + v.w
 - (ii) $u.(\alpha v) = \alpha(uv)$
- [12] Define Inner Product Space

- [1] Prove that a subset S of a vector space V is a subspace of V iff the following conditions are satisfied.
 - (a) if $u, v \in S$ then $u + v \in S$
 - (b) if α is a scalar and $u \in V$ then $\alpha u \in V$
- [2] Let V be a vector space. Prove that,
 - (a) The set $\{v\}$ is L.D. iff $v = \overline{0}$
 - (b) The set $\{v_1, v_2\}$ is L.D. iff v_1, v_2 are collinear.
 - (c) The set $\{v_1, v_2, v_3\}$ is L.D. iff v_1, v_2, v_3 are coplanar.

- [3] Let $T:U\to V$ be a linear transformation. Then prove the following
 - (1) N(T) is a subspace of U
 - (2) R(T) is a subspace of V
 - (3) T is one-one iff N(T) is a zero subspace of U. i.e. $N(T) = \{0_U\}$
- [4] Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y, z) = (x + y + z, y + z, z). Then find N(T), R(T), n(T) and r(T). Also verify rank-nullity theorem.
- [5] Let a linear transformation $T: V_2 \to V_3$ be defined by

$$T(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2, 7x_2)$$

Find the matrix associate with linear transformation relative to standard bases $B_1 = \{e_1, e_2\}$ and $B_2 = \{f_1, f_2, f_3\}$ of V_2 and V_3 respectively.

[6] Let $T_1, T_2: U \to V$ be two linear maps and B_1 and B_2 be their ordered bases respectively. Prove that

$$(\alpha_1 T_1 + \alpha_2 T_2 : B1, B2) = \alpha_1 (T_1 : B1, B2) + \alpha_2 (T_2 : B1, B2)$$

- [7] Prove that any orthogonal set of non-zero vectors in an inner product space is linearly independent (LI).
- [8] Orthonormalise the set of linearly independent vectors $\{(1,0,1,1),(-1,0,-1,1),(0,-1,1,1)\}$ of V_4 .

