No. of Printed Pages:

Sardar Patel University, Vallabh Vidyanagar
 B.Sc.' - Semester-VI : Examinations : 2021-22

Subject: Mathematics
US06CMTH23
Linear Algebra
Max. Marks : 70

Timing: $03.00 \mathrm{pm}-05.00 \mathrm{pm}$
Date: 06/04/2022, Wedneday

Instruction : The symbols used in the paper have their usual meaning, unless specified

Q: 1. Answer the following by choosing correct answers from given choices.
[1] Any two generating sets of a vector space must have \qquad
$[A]$ no common elements $[B]$ all different elements $[C]$ same number of elements $[D]$ none
[2] If a vector space V with dimension n contains 3 linearly independents vectors then n
$[\mathrm{A}]=3$
$[B]<3$
$[\mathrm{C}]>3$
$[D] \geqslant 3$
[3] If B_{1} and B_{2} are two bases for a vector space with dimensions m and n then
[A] $m>n$
[B] $m<n$
$[\mathrm{C}] m=n$
[D] $m+n=0$
[4] R^{3} and R^{2} are two real vector spaces, $N(T)$ is null space for a linear transformation $T: R^{3} \rightarrow R^{2}$ and $v_{1} \neq v_{2}$ then $T\left(v_{1}\right) \ldots T\left(v_{2}\right)$
$[\mathrm{A}]=$
$[B]<$
$[\mathrm{C}]>$
$[D] \neq$
[5] If V_{1} and V_{2} are two vector spaces with dimensions 2 and 4 then $I\left(V_{1}, V_{2}\right)=$ \qquad
[A] 2
[B] 4
[C] 8
[D] 16
[6] If V and V^{\prime} are vector spaces over fields F and F^{\prime} respectively then a linear transformation $T: V \rightarrow V^{\prime}$ can be defined only if \qquad
[A] $F=F^{\prime}$
$[B] . F \subset F^{\prime}$
$[C] F^{\prime} \subset F$
[D] $V=V^{t}$
[7] Let $\left\{v_{1}, v_{2}\right\}$ and $\left\{u_{1}, u_{2}\right\}$ be two basis of vector space V_{2} respectively. If $T: V_{2} \rightarrow V_{2}$ is a linear transformation such that $T\left(v_{1}\right)=2 u_{1}+3 u_{2}$ and $T\left(v_{2}\right)=u_{1}-2 u_{2}$ then the matrix associated with T is
[A] $\left[\begin{array}{cc}2 & 3 \\ 1 & -2\end{array}\right]$
[B] $\left[\begin{array}{cc}2 & 1 \\ 3 & -2\end{array}\right]$
$[\mathrm{C}]\left[\begin{array}{cc}-2 & 2 \\ 1 & 3\end{array}\right]$
[D] $\left[\begin{array}{cc}1 & 3 \\ -2 & 2\end{array}\right]$
[8] Rank of the matrix $\left[\begin{array}{ll}1 & -2 \\ 2 & -3\end{array}\right]$ is .-...
[A] 0
[B] 1
[C] 2
[D] 3
[9] If A is an orthogonal subset of an inner product space then $u_{1} \cdot u_{2}-u_{2} \cdot u_{3}-0$ for every $u_{1}, u_{2}, u_{3} \in A$
$[\mathrm{A}]<$
$[B]>$
$[C] \leqslant$
$[\mathrm{D}]=$
[10] If $u, v \in V$, an inner product space, such that $u \neq v$ then $\|u\| .--\quad\|v\|$
[A] <
$[B]>$
$[\mathrm{C}]=$
$[D] \neq$

Q: 2. In the following, depending on the type of question either fill in the blank or answer whether a statement is true false
[1] If dimension of a vector space is 10 then it cannot contain more than 10 linearly independent vectors. (True/False?)
[2] A subspace of a vector space is not necessarily an abelian group.(True/False?)
[3] If T is a linear transformation on a vector space with dimension 8 and nullity of T is 2 then its rank is 4 . (True/False?)
[4] If T is a linear map then for a scalar α the map $\alpha^{2} T$ is also a linear map. (True/False?)
[5] Dimensions of real vector spaces $M_{3 \times 4}$ and $M_{2 \times 6}$ are equal. (True/False)
[6] A matrix associated with a linear transformation $T: U \rightarrow V$ depends onthe basis of vector spaces U and V used to represent T. (True/False)
[7] If V is an inner product space then V is an abelian group also. (True/False?)
[8] Every finite dimensional inner product space has an orthogonal basis. (True/False)?
Q: 3. Answer TEN of the following.
[1] Define Real Vector Space
[2] In any vector space prove that $\alpha u=\overline{0}$ iff either $\alpha=0$ or $u=\overline{0}$.
[3] Define (1) Subspace of a vector space. (2) Span.
[4] Examine whether $T: R^{2} \rightarrow R^{3}, T(x, y)=(x, y, 0)$ is a linear map.

[5] If $T: R^{3} \rightarrow R^{4}$ is a one-one linear map then find the nullity of T.
[6] Define (1) Nullity of a linear trnasformation (2) Non-Singular Linear Map.
[7] Define Matrix Associated with a linear Transformation
[8] Prove that the columns of a square matrix are LI iff rows of the matrix are LI.
[9] Find the nullity of $\left[\begin{array}{cc}3 & -4 \\ 4 & 2\end{array}\right]$
[10] Define (1) Orthogonal set of vectors (2) Projection of a vector
[11] Let V be a, real inner produci space, u, v and w be any three vectors in V and α a scalar. Then prove the following.
(i) $(u+v) \cdot w=u \cdot w+v \cdot w$
(ii) $u \cdot(\alpha v)=\alpha(u v)$
[1.2] Define Inner Product Space

Q: 4. Attempt ANY FOUR of the following questions.
[1] Prove that a subset S of a vector space V is a subspace of V iff the following conditions are satisfied.
(a) if $u, v \in S$ then $u+v \in S$
(b) if α is a scalar and $u \in V$ then $\alpha u \in V$
[2] Let V be a vector space. Prove that,
(a) The setpuis L.D. iff $v=\overline{0}$
(b) The set $\left\{v_{1}, v_{2}\right\}$ is L.D. iff v_{1}, v_{2} are collinear.
(c) The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is L.D. iff v_{1}, v_{2}, v_{3} are coplanar.
[3] Let $T: U \rightarrow V$ be a lincar transformation. Then prove the following

(1) $N(T)$ is a subspace of U
(2) $R(T)$ is a subspace of V
(3) T is one-one iff $N(T)$ is a zero subspace of U. i.e. $N(T)=\left\{0_{U}\right\}$
[4] Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation defined by $T(x, y, z)=(x+y+z, y+z, z)$. Then find $N(T), R(T), n(T)$ and $r(T)$. Also verify rank-nullity theorem.
[5] Let a linear transformation $T: V_{2} \rightarrow V_{3}$ be defined by

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 2 x_{1}-x_{2}, 7 x_{2}\right)
$$

Find the matrix associate with linear transformation relative to standard bases $B_{1}=\left\{e_{1}, e_{2}\right\}$ and $B_{2}=\left\{f_{1}, f_{2}, f_{3}\right\}$ of V_{2} and V_{3} respectively.
[6] Let $T_{1}, T_{2}: U \rightarrow V$ be two linear maps and B_{1} and B_{2} be their ordered bases respectively. Prove that

$$
\left(\alpha_{1} T_{1}+\alpha_{2} T_{2}: B 1, B 2\right)=\alpha_{1}\left(T_{1}: B 1, B 2\right)+\alpha_{2}\left(T_{2}: B 1, B 2\right)
$$

[7] Prove that any orthogonal set of non-zero vectors in an inner product space is linearly independent (LI).
[8] Orthonormalise the set of linearly independent vectors $\{(1,0,1,1),(-1,0,-1,1),(0,-1,1,1)\}$ of V_{4}.

