Note: Figures to the right indicates the full marks.
Q. 1 Answer the following by selecting the correct choice from the given options.
1 $\qquad$ is a ring with no unit element.
(a) $Z$
(b) $Z-\{0\}$
(c) $Z-\{0,1\}$
(d) 22

2 In a Boolean ring, $a+a=$ $\qquad$ (d) 1
(a) 0
(b) $a^{2}$
(c) $a$
(d) 1

3 is not an integral domain.
(a) $Z_{4}$
(b) $Z_{5}$
(c) $Q$
(d) $C$

4 Every element of Equivalence class can be expressed as $\qquad$ $, a, b \in R, b \neq 0$
(a) $a \sim b$
(b) $a b^{-1}$
(c) $\overline{(a, b)}$
(d) $(\widetilde{a, b})$

5 $\qquad$ is a smallest field containing $R$.
(a) $Z$
(b)Q
(c) $F$
(d) $C$

6 A field of Ch. 0 contains a $\qquad$ field.
(a) integer
(b) rational
(c) special
(d)prime
$7 \quad \ln R=Z+i Z,(2,-1+5 i)=$ $\qquad$ -
(a) $1+i$
(b) $1-i$
(c) 1
(d) $i$
$81+i$ is $\qquad$ in $Z+i Z$

(a) unit
(b) regular element
(c) irreducible
(d) reducible

9 If $p$ is prime, and $n>1, \sqrt[n]{p}$ is $\qquad$ -
(a) irrational
(b) prime
(c) rational
(d) composite

10 If $f(x)=3 x^{3}-3 x^{2}+9 x+6 \in Z[x]$ then $C(f)=$ $\qquad$ -
(a) 0
(b) 1
(c) 2
(d) 3

## Q. 2 Answer the following.(True/False)

1 The ring of real quaternions is commutative.
2 In field every non-zero element is regular.
3 Every prime ideal is maximal.
4 If $I$ and $J$ are ideals in $R$ then $I \cup J$ is an ideal in $R$.
5 In a ring every irreducible element is prime.
6 Any associate of an irreducible element is also irreducible.
$7 \quad R[x]$ is a field.
$8 Z[x]$ is a unique factorisation domain.

## Q. 3 Answer ANY TEN of the following.

1 Prove or disprove that $Z_{6}$ is an integral domain.
2 Give an example of a Boolean ring. Justify your example.


3 Define: embedding
4 If $R$ is a finite commutative ring then prove that every prime ideal of $R$ is a maximal ideal.
5 Prove that every field is a simple ring.
6 Define: Left Ideal
7 If $R=\{a+b \sqrt{-5} / a, b \in Z\}$ and $a=1+2 \sqrt{-5}$ and $b=3$ then find $(a, b)$.
8 Show that the gcd of two elements if it exists is unique up to units.
9 Define: Euclidean domain
10 If $F$ is a field then prove that $F[x]$ is a principal ideal domain.
11 Find a root of $f(x)=x^{2}-3 x+3-i$ in $R=Z+i Z$
12 Define: Multiple root in polynomial ring

## Q-4 Answer ANY FOUR of the following,

1 Let $R$ be the set of all subsets of $X$. Define + and . on $R$ by $A+B=(A-B) \cup(B-A)$ and $A \cdot B=A \cap B$. Then show that $R$ is a ring. Also show that $R$ is a commutative ring with unit element.
2 Let $R$ be a ring. Then prove that
(i) $a \cdot 0=0=0 \cdot a, \forall a \in R$
(ii) $a(-b)=(-a) b=-(a b), \forall a, b \in R$
(iii) $(-a)(-b)=a b, \forall a, b \in R$

3 State and prove First Isomorphism theorem.
4 Prove that $P$ is a prime ideal of $Z$ iff either $P=\{0\}$ or $P=p Z$ for some prime $p$.
5 Show that the ring of Gaussian integers is an Euclidean domain.
6 Let $R$ be an Euclidean domain. Then prove that any $a \in R$ which is not a unit can be expressed as a product of irreducible elements.
7 If $R$ is a Euclidean domain or a principal ideal domain, then prove that $R$ is a unique factorisation domain.
8 Show that $S_{\alpha}$ is a ring homomorphism.

## Pg. 2 of 2

