

(P.T.O.)

(viii)	In the Simpson's $\frac{1}{2}^{rd}$ rule, we have t	to use two subin	tervals of width.				
	(a) Equal	(b)	Opposite				
	(c) Different	(d)	None of these				
(ix)	The forward difference operator Δ	defined as					
	(a) $\Delta y_i = y_i - y_{i-1}$	(b)	$\Delta y_i = y_{i-1} - y_i$				
	(c) $\Delta y_i = y_{i+1} - y_i$	(d)	$\Delta y_i = y_i - y_{i+1}$				
(x)	"The best representative curve to the given set of the observed data or observations is one for which <i>E</i> , the sum of the squares of the residuals, is minimum". This concept is known as the						
	(a) Interpolation	(b)	Extrapolation				
	(c) Principle of least squares	(d)	Curve fitting				
Q-2	State True or False. [Attempt all]						
(1)	For the spherical polar coordinate system, the unit vectors are $\hat{e}_r, \hat{e}_{\theta}$ and \hat{e}_{ϕ} .						
(2)	For cylindrical coordinates $ds^2 = dr^2 + r^2 d\theta^2 + dz^2$.						
(3)	$P_n(\mu)$ is the coefficient of $J_n(\mu)$ in the expansion of $(1 - 2\mu h + h^2)^{-1/2}$.						
(4)	Legendre's differential equation is given by $(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0.$						
(5)	The phase angle is given by $\phi_n = log\left(\frac{\beta_n}{\alpha_n}\right)$.						
(6)	The rms or effective value of the function f over a period τ is given by $f_E^2 = \frac{1}{\tau} \int_0^{\tau} f^2(t) dt$.						
(7)	The shift operator E is defined as $Ef(x) = f(x + h)$.						
(8)	$y = ax^2 + bx + c$ be the equation of parabola.						
			al print initia and the older rise				
Q-3	Answer the following questions in short. (Attempt any ten)						
(1)	Write down Laplacian in terms of orthogonal curvilinear coordinates.						
(2)	If $u = 2x + 1$, $v = 3y - 1$, $w = z + 2$, show that u, v, w are orthogonal.						
(3)	Write equivalent expressions for gradient and divergence in terms of rectangular coordinates.						
(4)	Show that: $P_n(-\mu) = (-1)^n P_n(\mu)$.						
(5)	For Bessel's function, prove that: $xJ'_n(x) = -n J_n(x) + xJ_{n-1}(x)$.						
(6)	Show that: $2nH_{n-1}(x) = H'_{n}(x)$						

- (7) Write one dimensional wave equation.
- (8) Write telegraphy equation.
- (9) Write sine series for f(x) when $0 \le x \le \pi$. (Note: derivation is not required)
- (10) Define interpolation.
- (11) Derive an equivalent equation of a straight line for $y = ae^{bx}$.
- (12) For a shift operator *E*, show that $\nabla = \frac{E-1}{E}$.

Q.4 Long Answer Questions. (Attempt any four)

- (1) Derive expression of gradient in terms of orthogonal curvilinear system.
- (2) Prove that the product of sets of two triads of mutually orthogonal vectors are reciprocal to each other.
- (3) Derive the series solution of Legendre differential equation in the form of descending power of x.
- (4) State and Derive the Rodrigue's formula.
- (5) Write the Fourier series for a periodic function f(x) defined in the interval [-π, π].
 Derive the coefficients a₀, a_n and b_n of the series.
- (6) Obtain the Fourier series for a function $f(x) = x \sin x$, in the interval $-\pi < x < \pi$. Deduce that: $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1\cdot 3} - \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} - \cdots$
- (7) Using Lagrange's interpolation formula, evaluate f(5) from the given data.

x	1	3	4	6
y = f(x)	-3	0	30	132

(8) Using Simpson's 1/3 rule find the approximate value of $y = \int_0^{\pi} \sin x \, dx$ by dividing the range of integration into six equal parts. What is the analytical value of $y = \int_0^{\pi} \sin x \, dx$.

