SEAT No.

		B.Sc. (5 th - Semester) Examination Code No. US05CPHY21: [Classical Mechanics]
te: 2	3-11-	2021, Tuesday Time: 3:00 p.m. to 5:00 p.m.
te: (i) All	the symbols have their usual meanings Total Marks: 70
(ii) Fig	ures at the right side of questions indicate full marks
		In Chains Questions (Attempt All) [10]
	Multip	ne Choice Questions (Attempt An)
		The degree of freedom for a two particle in space are
		(a) 3 (b) 4 (d) 0
	(2)	(c) 6 (d) 0 The Lagrange's equations of motion for a system are equivalent to
		equations of motion . (a) Laplace's (b) Poisson's
		(c) Maxwell's (d) Newton's
		The Lagrangian function is define by
		(a) $L = T + V$ (b) $L = F - V$
		(c) $L = T - V$ (d) $L = F + V$
	(4)	must be applied to maintain the rotation of the system about given axis
	(1)	(a) force (b) momentum
		(c) velocity (d) torque
	(5)	Newton's laws of motion are valid in the two systems moving with a
	(0)	relative velocity.
		(a) uniform (b) non uniform
		(c) Accelerated (d) double
	(6)	The moment of inertia is a tensor of rank
		(a) one (b) two
		(c) three (d) zero
	(7)	The path of a particle is when it is moving under constant conservative
		force field .
		(a) cycloid (b) hyperbolic
		(c) parabolic (d) straight line
	(8)	The equation of constraints is for a cylinder rolling on inclined plane .
		(a) $r d\theta - dx = 0$ (b) $r d\theta - dx = 0$
		(c) $r dr - dx = 0$ (d) $r dx - dx = 0$
	(9)	For conservative system, the potential energy is a function of,
		(a) position (b) velocity
		(c) force (d) acceleration
	(10)	In Hamiltonian formulation potion coordinate and taken as independent variable
		(a) acceleration (b) momenta
		(c) force (d) velocity
	101010	[08]
.2		g the blanks and True-False [00] Scleronomous constraints are independent of time (True/False)
	(1)	The Hamiltonian function is defined by $H=T-V$ (True/False)
	(2)	

(4) If $I_1 \neq I_2 \neq I_3$, then the body is called _____ top,

- (5) The 3N-dimensional space is called configuration space (True/False)
- (6) In variational principle the line integral of some function between two end points is zero (True/False)
- (7) The space depends on position coordinate and momenta is called phase space (True/False)
- (8) The Poisson brackets are commutative (True/False)

Q.3 Short Questions (Attempt any Ten)

- (1) Define Holonomic and non-holonomic constraints.
- (2) Define cyclic coordinates.
- (3) Write an advantage of Lagrangian formulation.
- (4) Define inertial and non-inertial frame of reference.
- (5) What are Euler's angles?
- (6) Define precessional velocity.
- (7) State the variational principle.
- (8) State the Hamilton's principle .
- (9) What is undetermined multiplier?
- (10) Write an assumption of Hamiltonian formulation .
- (11) What is a phase diagram?
- (12) What is Generating function?

Q.4 . Long Questions (Attempt any four) All questions carry equal marks

- (1) Derive the Lagrange's equation of motion for a conservative system using D'Alembert's principle.
- (2) Construct the Lagrangian of Atwood machine and derive its equation of motion.
- (3) Discuss the rotating coordinate systems and derive the expressions of velocity and acceleration of the particle.
- (4) Discuss the motion of the earth with necessary diagrams.
- (5) Discuss the technique of calculus of variation and derive the general Euler's equation.
- (6) Construct the Lagrangian and derive the equations of motion for a cylinder rolling on inclined plane using undetermined multiplier.
- (7) Deduce the Hamilton's equation of motion and show that H is a constant of motion and also give the total energy.
- (8) Discuss the Canonical transformation and derive the Canonical transformation equation for $F_1 = F_1(q_i, Q_i, t)$.

* * * * *

P. P. Science College Art LIBRARY & [20]