SEAT No.__

No. of Printed Pages : 03

[163]	SARDAR PATEL UNIVERSITY (B. Sc. Sem.5 Examination)
C	MATHEMATICS - US05CMTH24
	METRIC SPACES AND TOPOLOGICALSPACES
	26 th November 2021, Friday
	Time: 03:00 to 05:00p.m. Total Marks: 70
	Note:Figures to the right indicates the full marks.
Q:1	Answer thefollowing by selecting the correct choice from [10]
· · -	the given options.
1.	The set (5,7) is
	(a) closed (b) countable (c) uncountable (d) unbounded
2.	A set {1,3,6,10, } is
	(a) countable (b) uncountable (c) bounded (d) finite
3.	In metric space $(R, d), B[4, \frac{3}{4}] =$
	(a) \emptyset (b) {0} (c) $(\frac{13}{4}, \frac{19}{4})$ (d) {4}
4.	is u open
	(a) $[2,4]$ (b) R (c) $[5,7)$ (d) none $\left(\stackrel{\sim}{\simeq} (LIBRARY) \stackrel{\sim}{=} \right)$
5.	In a topological space of closed set is closed
	(a) intersection (b) finite union
	(c) finite intersection (d) arbitrary union
6.	$_$ is u –closed set
	(a) (4,13) (b) (2,4] (c) {7} (d) none of these
7.	(X, τ) is a topological space, $A \subset X$ then A is dense in X if
	(a) $A = X$ (b) $\overline{A} \subset X$
	(c) $A' = X$ (d) $\overline{A} = X$
8.	Int(<i>A</i>) is the open subset of <i>A</i> .
	(a) largest (b) smallest (c) highest (d) none
9.	The space (<i>R</i> , <i>u</i>) is
	(a) connected (b) disconnected
	(c) homeomorphic (d) bicontinuos
10.	(R, u) and $((5, 7), u_{(5, 7)})$ are
	(a) compact (b) disconnected
	(c) homeomorphic (d) homeomorphism
Q:2	Answer the given statement is TRUE or FALSE [08]
1.	Infinite subset of a countable set is countable
2.	If ρ and σ be two metrics on <i>M</i> then $\rho - \sigma$ is also a metric on
	M.
3.	Half open intervals are neither u –open nor u –closed

(1)

- 4. On a set that contains at least three elements, we can always define at least three trivial topologies.
- 5. (X, τ) is a topological space. $A \subset X$ then A is τ –open set iff $Int(A) \subset A$
- 6. (\mathbb{R}, u) and (\mathbb{R}, D) are homeomorphic
- Any discrete space that has more than one point is disconnected
- 8. An image of a connected space is connected

Q:3 Answer ANY TEN of the following.

- 1. Prove that set of all positive integers is countable
- 2. Define:Metric
- 3. Show that if $\{x_n\}$ is convergent sequence in R_d then there exists a positive integer N such that $x_N = x_{N+1} = x_{N+2} = \dots = x$
- 4. Check whether the set A = [0,2) is u open or not
- 5. Let $X = \{1,3,5,7\}$ and $\tau = \{\emptyset, X, \{3\}, \{5\}, \{1,3\}, \{1,5\}\}$ check whether τ is a topology for *X*.
- 6. Let $X = \{1,2,3,4,5\}, \tau = \{\emptyset, X, \{3\}, \{5\}, \{3,5\}\}$ check whether the set $\{1,2,4\}$ is τ -closed or not.
- 7. In a topological space (R, u) check whether $\frac{1}{8}$ is an interior point of [0,1]
- 8. Define: closure of a set
- 9. Define: continuous function
- 10. Show that (X, \mathcal{J}) is connected
- 11. Define: Hausdroff space
- 12. In a T_2 –space(X, τ), if $p \in X$ then prove that {p} is τ –closed.
- Q:4 AnswerANY FOUR of the following.

[32]

[20]

LIBRARY

VNa

- (1) Let (M_1, ρ_1) and (M_2, ρ_2) be two metric spaces and let $f: M_1 \rightarrow M_2$ then show that f is continuous on M_1 iff the inverse image of every open set is open
- (2) Let (M, d) be a metric space and let $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ then show that d_1 is a metric on M.
- (3) In usual notations prove that (R, u) is a topological space.
- (4) Show that any finite set of real numbers is closed in the usual topology of \mathbb{R} .

- (5) Find the set of all cluster points of (1,2) in u –topology of R.
- (6) Let (X, τ) be a topological space and A be a subset of X. A' be the set of all cluster points of A. Prove that A is τ −closed iff A' ⊂ A
- (7) Prove that topological space (X, τ) is disconnected iff X has nonempty proper subset that is both τ -open and τ -closed.
- (8) Let (X, τ) be a topological space and Y be a subset of X. If the subspace (Y, τ_Y) is connected then prove that subspace $(\overline{Y}, \tau_{\overline{Y}})$ is also connected.

3