\qquad

[163] SARDAR PATEL UNIVERSITY (B. Sc. Sem. 5 Examination) MATHEMATICS-US05CMTH24 METRIC SPACES AND TOPOLOGICALSPACES 26th ${ }^{\text {th }}$ November 2021, Friday

Time: 03:00 to 05:00p.m.
Total Marks: 70
Note:Figures to the right indicates the full marks.
Q:1 Answer thefollowing by selecting the correct choice from the given options.

1. The set $(5,7)$ is \qquad
(a) closed
(b) countable
(c) uncountable
(d) unbounded
2. A set $\{1,3,6,10, \ldots\}$ is \qquad
(a) countable
(b) uncountable
(c) bounded
(d) finite
3. In metric space $(R, d), B\left[4, \frac{3}{4}\right]=$ \qquad
(a) \varnothing
(b) $\{0\}$
(c) $\left(\frac{13}{4}, \frac{19}{4}\right)$
(d) $\{4\}$
4.

(a) $[2,4]$
is u-open
(b) R
(c) $[5,7)$
(d) none
5. In a topological space \qquad of closed set is closed
(a) intersection
(b) finite union
(c) finite intersection
(d) arbitrary union

6.
(a) $(4,13)$
(b) $(2,4]$
(c) $\{7\}$ (d) none of these
7. (X, τ) is a topological space, $A \subset X$ then A is dense in X if \qquad
(a) $A=X$
(b) $\bar{A} \subset X$
(c) $A^{\prime}=X$
(d) $\bar{A}=X$
8. $\operatorname{Int}(A)$ is the \qquad open subset of A.
(a) largest
(b) smallest
(c) highest
(d) none
9. The space (R, u) is \qquad
(a) connected
(b)disconnected
(c) homeomorphic
(d) bicontinuos
10. (R, u) and $\left((5,7), u_{(5,7)}\right)$ are \qquad
(a) compact
(b) disconnected
(c) homeomorphic
(d) homeomorphism

Q:2 Answer the given statement is TRUE or FALSE

1. Infinite subset of a countable set is countable
2. If ρ and σ be two metrics on M then $\rho-\sigma$ is also a metric on M.
3. Half open intervals are neither u-open nor u-closed
4. On a set that contains at least three elements, we can always define at least three trivial topologies.
5. (X, τ) is a topological space. $A \subset X$ then A is τ-open set iff $\operatorname{Int}(A) \subset A$
6. $\quad(\mathbb{R}, u)$ and (\mathbb{R}, D) are homeomorphic
7. Any discrete space that has more than one point i disconnected
8. An image of a connected space is connected

Q:3 Answer ANY TEN of the following.

1. Prove that set of all positive integers is countable
2. Define:Metric
3. Show that if $\left\{x_{n}\right\}$ is convergent sequence in R_{d} then there exists a positive integer N such that $x_{N}=x_{N+1}=x_{N+2}=\cdots=x$
4. Check whether the set $A=[0,2)$ is u-open or not
5. Let $X=\{1,3,5,7\}$ and $\tau=\{\varnothing, X,\{3\},\{5\},\{1,3\},\{1,5\}\}$ check whether τ is a topology for X.
6. Let $X=\{1,2,3,4,5\}, \tau=\{\emptyset, X,\{3\},\{5\},\{3,5\}\}$ check whether the set $\{1,2,4\}$ is τ-closed or not.
7. In a topological space (R, u) check whether $\frac{1}{8}$ is an interior point of $[0,1]$
8. Define: closure of a set
9. Define: continuous function
10. Show that (X, \mathcal{J}) is connected
11. Define: Hausdroff space
12. In a $T_{2}-\operatorname{space}(X, \tau)$, if $p \in X$ then prove that $\{p\}$ is τ-closed.

Q:4 AnswerANY FOUR of the following.

(1) Let $\left(M_{1}, \rho_{1}\right)$ and $\left(M_{2}, \rho_{2}\right)$ be two metric spaces and let $f: M_{1} \rightarrow M_{2}$ then show that f is continuous on M_{1} iff the inverse image ofevery open set is open
(2) Let (M, d) be a metric space and let $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}$ then show that d_{1} is a metric on M.
(3) In usual notations prove that (R, u) is a topological space.
(4) Show thatany finite set of real numbers is closed in the usual topology of \mathbb{R}.
(5) Find the set of all cluster points of $(1,2)$ in u-topology of R.
(6) Let (X, τ) be a topological space and A be a subset of X. A^{\prime} be the set of all cluster points of A. Prove that A is τ-closed iff $A^{\prime} \subset A$
(7) Prove that topological space (X, τ) is disconnected iff X has nonempty proper subset that is both τ-open and τ-closed.
(8) Let (X, τ) be a topological space and Y be a subset of X. If the subspace $\left(Y, \tau_{Y}\right)$ is connected then prove that subspace $\left(\bar{Y}, \tau_{\bar{Y}}\right)$ is also connected.

