SEAT No.		No. of	Frinted Pages : 02
[137]	SARDAR PATEL UNIVERSITY BSc Sem V Examination, Mathematics US05CMTH23-Group Theory		STATUTE OF THE STATE
Date : 25/11/21			Time : 3-00 TO 5-00 P.m.
Q.1 Choose the correct	options.		(10)
1. The order of -1 in t	the multiplicative g	roup of non zero rational nu	mbers is
a. infinite	b. 1	c. 2	d. none
2. The order of the gro	oup S ₅ is		
a.4	b. 5	c. 4!	d. 5!
3. In Klein 4-group = {	$\{e, a, b, c\}, a^2 = _$	- In half say it famou	
a. <i>e</i>	b. <i>b</i>	c. a	d. c
4. The Generators of	cyclic group $G = \{A \}$	All fourth roots of unity}	under multiplication is
*		in the second state of the second	
a.1, -1	b. <i>i</i> , <i>i</i> ³	c . <i>ω</i> , <i>ω</i> ²	d. none
5. If $H = 7\mathbb{Z}$ is a subg	roup of additive gr	roup $G = \mathbb{Z}$ then the index (G	G:H) =
a.3	b. 5	c. 2	d. 7 r. P. Science
6. The cyclic group of	order 7 has only _	generator.	AT CO
a.7	b. 6	c. 4	d. 1 d. (LIBRARY)
7. If Ø is Euler's funct	ion then $\emptyset(12) = \frac{1}{2}$		* *
a.3	b. 11	c. 2	d. 4 . Nagai
8. <i>S_n</i> is group			
a. Klein 4-group	b. cyclic	c. commutative	d. non-commutative
9. A permutation σ is	an odd permutatio	on if signature of σ is	 Sizes and prove 5
a.1	b1	c. 2	d. none
10. The external direc	t sum of Z_2 is		
a.Q	b. Z	c. ℤ ₂	d. Klein 4-group
		Alishi Tikeliti (
Q.2 Do as directed.			(8)
1) The group (f_{i})	of all 2 x 2 non-s	singular matrices is commuta	tive group(True/False).
2) The multiplicativ	ve inverse of 6 in Z	* is(6/7).	
 Every group has 	at least one subgro	oup (True/False).	

1

- 5) Every isomorphism is homomorphism (True/False).
- 6) Fill in the blank: $(b^{-1}a^{-1})^{-1} =$ _____.
- 7) An index of a subgroup is the number of elements in it (True/False).
- 8) $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ is an identity permutation (True/False).

Q.3 Answer any TEN.

- 1) Prove that every element of group G has unique inverse.
- 2) Does the set (Z_8^*, \cdot) form a group? Justify.
- 3) Prove that every cyclic group is abelian.
- 4) If an order of a group is 10 then what are possible orders of it's subgroups?

P. Scie

LIBRAR

V. Nad

(20)

(32)

- 5) Is $(\mathbb{Z}, +)$ a cyclic group? If yes, find all generators.
- 6) Find order of each element of group (*G*, ·), where $G = \{1, -1, i, -i\}$.
- 7) Define simple group.
- State second isomorphism theorem.
- 9) Define coset in a group.
- 10) Express the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 6 & 1 & 4 \end{pmatrix}$ as a product of disjoint cycles.
- 11) Is the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ commutative?
- 12) What is signature of the permutation?

Q. 4 Attempt any FOUR

- 1) Prove that (\mathbb{Z}_5^*, \cdot) is an abelian group.
- 2) Prove that every subgroup of cyclic group is cyclic.
- 3) State and prove Lagrange's theorem for a finite group.
- 4) State and prove Fermat's theorem.
- 5) Prove that a homomorphism f is one-one iff $Kerf = \{e\}$?
- 6) State and prove First isomorphism theorem.

Define cycle, Even and odd permutations and transpositions.

X

- 8) State and prove Cayley's theorem.
- *r*