\qquad
Q. 1 Choose the correct options.

1. The order of -1 in the multiplicative group of non zero rational numbers is \qquad .
a. infinite
b. 1
c. 2
d. none
2. The order of the group S_{5} is \qquad
a. 4
b. 5
c. $4!$
d. 5!
3. In Klein 4-group $=\{e, a, b, c\}, a^{2}=$ \qquad -.
a.e
b. b
c. a
d. C
4. The Generators of cyclic group $G=\{$ All fourth roots of unity $\}$ under multiplication is
\qquad -.
a.1, -1
b. i, i^{3}
c. ω, ω^{2}
d. none
5. If $H=7 \mathbb{Z}$ is a subgroup of additive group $G=\mathbb{Z}$ then the index $(G: H)=$ \qquad
a. 3
b. 5
c. 2
d. 7
6. The cyclic group of order 7 has only \qquad generator.
a. 7
b. 6
c. 4
d. 1
7. If \emptyset is Euler's function then $\varnothing(12)=$ \qquad .
a. 3
b. 11
c. 2
d. 4

8. S_{n} is group \qquad -
a. Klein 4-group
b. cyclic
c. commutative
d. non-commutative
9. A permutation σ is an odd permutation if signature of σ is \qquad -.
a. 1
b. -1
c. 2
d. none
10. The external direct sum of Z_{2} is \qquad -
a. Q
b. \mathbb{Z}
c. \mathbb{Z}_{2}
d. Klein 4-group
Q. 2 Do as directed.
1) The group ($G,{ }^{\prime}$) of all 2×2 non-singular matrices is commutative group(True/False).
2) The multiplicative inverse of 6 in Z_{7}^{*} is \qquad (6/7).
3) Every group has at least one subgroup (True/False).
4) Fill in the blank: ($\left.\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$ is a \qquad permutation (even/odd).
5) Every isomorphism is homomorphism (True/False).
6) Fill in the blank: $\left(b^{-1} a^{-1}\right)^{-1}=$ \qquad -.
7) An index of a subgroup is the number of elements in it (True/False).
8) $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$ is an identity permutation (True/False).

Q. 3 Answer any TEN.

1) Prove that every element of group G has unique inverse.
2) Does the set $\left(Z_{8}^{*}, \cdot\right)$ form a group? Justify.

3) Prove that every cyclic group is abelian.
4) If an order of a group is 10 then what are possible orders of it's subgroups?
5) is $(\mathbb{Z},+)$ a cyclic group? If yes, find all generators.
6) Find order of each element of group (G, \cdot), where $G=\{1,-1, i,-i\}$.
7) Define simple group.
8) State second isomorphism theorem.
9) Define coset in a group.
10) Express the permutation $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 6 & 1 & 4\end{array}\right)$ as a product of disjoint cycles.
11) Is the permutation $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right)$ commutative?
12) What is signature of the permutation?

Q. 4 Attempt any FOUR

1) Prove that $\left(\mathbb{Z}_{5}^{*}\right.$, ") is an abelian group.
2) Prove that every subgroup of cyclic group is cyclic.
3) State and prove Lagrange's theorem for a finite group.
4) State and prove Fermat's theorem.
5) Prove that a homomorphism f is one-one of $\operatorname{Ker} f=\{e\}$?
6) State and prove First isomorphism theorem.
7) Define cycle, Even and odd permutations and transpositions.
8) State and prove Cayley's theorem.

