No. of Printed Pages : 02

SEAT No.



| E12      | 4]                                                                                                                                                               |        |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|          | SARDAR PATEL UNIVERSITY (B. Sc. Sem.5 Examination)<br>MATHEMTICS - US05CMTH21 – REAL ANALYSIS<br>23 <sup>rd</sup> November 2021, Tuesday                         |        |
|          | Time: 03:00 to 05:00 p.m.Total Marks: 70Note: Figures to the right indicates the full marks.                                                                     |        |
| Q:1      | Answer the following by selecting the correct choice from [10] the given options.                                                                                |        |
| 1.       | The smallest member of $\{\frac{1}{n}, n \in N\}$ is                                                                                                             |        |
| 2.       | (a) $-1$ (b) 0 (c) 1 (d) do not exist<br>The lower bound of $\{\frac{(n-1)}{n}, n \in N\}$ is (LIBRARY                                                           | ollege |
|          | (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) 2                                                                                                                              | */     |
| 3.       | The set $\{\frac{1}{n}, n \in N\}$ is                                                                                                                            |        |
| 4.       | (a) open (b) closed (c) neither open nor closed (d) none<br>The interior of the set $N = $<br>(a) $\mathbb{N}$ (b) $\mathbb{Z}$ (c) $\mathbb{R}$ (d) $\emptyset$ |        |
| 5.       | If $\{s_n\} = \{1 + (-1)^n\}, n \in N$ then $\lim_{n \to \infty} \inf s_n =$<br>(a) 1 (b) 0 (c) -1 (d) does not exist                                            |        |
| 6.       | The range set of sequence $\{1 + (-1)^n\}$ is<br>(a) (0,2) (b) [0,2] (c) [-1,1] (d) $\{0,2\}$                                                                    |        |
| 7.       | Every monotonic increasing sequence which is not bounded above                                                                                                   |        |
|          | (a) diverges to $-\infty$ (b) diverges to $+\infty$ (c) converges to $-\infty$ (d) converges to $+\infty$                                                        |        |
| 8.       | A series with terms is called positive term series<br>(a) real (b) negative (c) non-negative (d) none of these                                                   |        |
| 9.       | A positive term geometric series cannot converge if<br>(a) $r \swarrow 1$ (b) $r \le 1$ (c) $r > 1$ (d) $r \ge 1$                                                |        |
| 10.      | The series $\sum \frac{1}{n}$ is                                                                                                                                 |        |
|          | (a) divergent(b) convergent(c) converges to 0(d) none of these                                                                                                   |        |
| Q:2      | Answer the given statement is TRUE or FALSE [08]                                                                                                                 |        |
| 1.<br>2. | An order structure is always a field structure $\frac{1}{5}$ is the multiplicative inverse of 5 in Z.                                                            |        |
| 3.       | N is a closed set                                                                                                                                                |        |

4. The set *S* is always a superset of its interior set

- 5. Every bounded sequence is convergent
- 6. A sequence cannot have more than one limit point
- 7. The series  $\sum \frac{1}{n^{(n+\frac{1}{n})}}$  is divergent

8. The series  $\Sigma \sin(\frac{1}{n})$  is divergent

## Q:3 Answer ANY TEN of the following.

- 1. Define: Absolute value of a function.
- 2. State order completeness properties
- 3. Prove that  $|x| < \varepsilon \Leftrightarrow -\varepsilon < x < \varepsilon$
- 4. Show that interior of S is a subset of S
- 5. Prove that every open interval is an open set
- 6. Define: closed set
- 7. Find the range set of sequence  $\{\frac{1}{n}\}$
- 8. Find limit point of sequence  $\{s_n\} = \{1\}$
- 9. Investigate limit superior of the sequence  $\{n^2\}$
- 10. Test the convergence of the series  $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$
- 11. Show that a necessary condition for convergence of an infinite series  $\Sigma u_n$  is that  $\lim_{n\to\infty} u_n = 0$
- 12. State Cauchy's General principle of convergence.

## Q:4 Answer ANY FOUR of the following.

- (1) Prove that  $\sqrt{3}$  is not a rational number
- (2) Show that the set of rational numbers is not order completeness.
- (3) Prove that the derive set S' of bounded infinite set has the smallest and the greatest member.
- (4) Show that every infinite bounded set has a limit point
- (5) State and prove Nested Interval theorem.
- (6) Prove that sequence  $\{r^n\}$  converges iff  $-1 < r \le 1$ .
- (7) State and prove comparison Test of  $2^{nd}$  type.
- (8) Show that the series  $\frac{1\cdot 2}{3^2 \cdot 4^2} + \frac{3\cdot 4}{5^2 \cdot 6^2} + \frac{5\cdot 6}{7^2 \cdot 8^2} + \cdots$  is convergent.

- X -



[32]

[20]