$$
\begin{gathered}
{[130 / \mathrm{A}-20]} \\
\text { Eng. }
\end{gathered}
$$

Date: 24-11-2021
Day: Wednesday

SARDAR PATEL UNIVERSITY

B. Sc. (SEMESTER-V) EXAMINATION

Subject: Inorganic Chemistry (US05CCHE22)

Time: 03:00 P.M. To 05:00 P.M.
Total Marks: 70

Q:1 Answer the following multiple-choice questions.

1. Which is the principal axis of rotation present in benzene molecule ?
(a) C_{6}
(b) C_{4}
(c) C_{3}
(d) C_{2}
2. Point group of BCl_{3} molecule is \qquad .
(a) $\mathrm{C}_{3 \mathrm{v}}$
(b) $\mathrm{D}_{2 \mathrm{~h}}$
(c) $D_{3 h}$
(d) $\mathrm{C}_{3 \mathrm{~h}}$
3. How many two-fold axis of rotation present in cyclobutene molecule ?
(a) 1
(b) 2
(c) 3
(d) 4
4. CN^{-}is a \qquad field ligand.
(c) bidentate
(d) octahedral
(a) strong
(b) weak
5. Which orbital is very important in CFT ?
(a) s
(b) p
(c) d
(d) f
6. The complexes in which the ligand substitution is fast are called \qquad complexes.
(a) inert
(b) parallel
(c) octahedral
(d) labile
7. $\mathrm{S}_{\mathrm{N}} 1$ is known as \qquad mechanism.
(a) dissociation
(b) association
(c) both (a) \& (b)
(d) none of these
8. Greater stability of chelated complexes is called.
(a) lability
(b) stability
(c) chelate effect
(d) none of these
9. The molecular formula of inorganic rubber is \qquad .
(a) $[\mathrm{NPCl}] n$
(b) $\mathrm{N}_{3} \mathrm{P}_{3}\left(\mathrm{NH}_{2}\right)_{6}$
(c) $\left(\mathrm{N}_{4} \mathrm{P}_{4} \mathrm{Cl}_{8}\right)$
(d) $\left[\mathrm{NPCl}_{2}\right] \mathrm{nPCl}_{5}$
10. How many isomers of $\mathrm{S}_{6}(\mathrm{NH})_{2}$ is possible?
(a) 2
(b) 3
(c) 4
(d) 5
$\mathrm{Q}: 2$ Fill in the blanks selecting the appropriate option given in the bracket:
11. The plane of reflection perpendicular to the principal axis is called \qquad plane. (horizontal / vertical)
12. \qquad molecule has an infinite fold axis of symmetry. (Tetrahedral / Linear)
13. In octahedral ligand field \qquad d-orbital possesses less energy. $\left(\mathrm{t}_{2 \mathrm{~g}} / \mathrm{e}_{\mathrm{g}}\right)$
14. The number of unpaired electron present in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is \qquad . (one / zero)
15. \qquad classified the complexes into labile and inert complexes. (Taube / Charles)
16. The ability of a complex to replace its one or more ligands is called its (stability / lability)
17. Imides of sulphur can be represented by general formula \qquad . $\left(\mathrm{S}_{\mathrm{n}}(\mathrm{NH})_{8-\mathrm{n}} / \mathrm{S}_{\mathrm{n}-8}(\mathrm{NH})_{\mathrm{n}}\right)$
18. \qquad is not monomer of silicones. $\left(\mathrm{RSi}(\mathrm{OH})_{3} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SiCl}_{3}\right)$

Q:3 Short Answer Questions (Attempt Any Ten):

1. Construct the multiplication table for $\mathrm{C}_{3 v}$ point group.
2. Draw the diagram to show that: $\mathrm{S}_{2}=\mathrm{i}$
3. Define: (a) Improper rotation (b) Identity operation.
4. Write note on spectrochemical series.
5. Define crystal field stabilization energy and mean pairing energy.
6. How the geometry of complex ion affected in the magnitude of Δ_{0} ?
7. Give the limitations of Job's method.
8. Explain macrocyclic effect.
9. Mention factors affecting the stability of complexes depends on nature of ligand.
10. Give the uses of silicones.
11. Give the general properties of inorganic polymers.
12. What is nitride of sulphur?

Q:4 Long Answer Questions (Attempt Any Four):

1. Discuss $D_{n h}$ and $D_{n d}$ point group with proper example.
2. Give the symmetry elements and point group present in following:
(a) Methane
(b) SF_{6}
(c) HCl
(d) SO_{2}
3. Discuss the distribution of d^{α} electrons in high spin and low spin octahedral complexes.
4. Explain $\left[\mathrm{CoF}_{6}\right]^{3-}$ ion giving M.O. energy level diagram.
5. Discuss the factors affecting the stability of complexes depends on properties of central metal ion.
6. What is Acid Hydrolysis? Explain the mechanism of acid hydrolysis of octahedral complexes in which the inert ligand is a π - acceptor.
7. Give the preparation, properties and structure of Borazine.
8. Give the preparation, properties and structure of Tetrasulphur tetranitride, $\mathrm{S}_{4} \mathrm{~N}_{4}$.

