SARDAR PATEL UNIVERSITY
 BS Sem-VI Examination
 Mathematics
 US06CMTH22-Ring Theory

Q. 1 Answer the following by selecting correct choice from the options.

1. \qquad is a skew field but not field.
A. \mathbb{Z}
D. Ring of Quaternion.
C. $M_{2}(\mathbb{R})$
B. \mathbb{Q}
2. \qquad is a not an integral domain.

A. \mathbb{Z}
C. $M_{2}(\mathbb{R})$
B. \mathbb{Q}
3. \qquad is a non-commutative ring with unit element.
A. \mathbb{Z}
B. \mathbb{Q}
D. All of these
C. $M_{2}(\mathbb{R})$
4. $\ln \mathbb{Z}+i \mathbb{Z}, G C D$ of 2 and $-1+5 i$ is \qquad
B. $2-i$
A. $2+i$
C. i
D. $1-i$
5. Quotient field of ring of Gaussian integers is \qquad .
B. $\mathbb{Q}+i \mathbb{Q}$
A. $\mathbb{Z}+i \mathbb{Z}$
C. \mathbb{Q}
D. $M_{2}(\mathbb{R})$
6. Every integral domain can be imbedded in a \qquad
B. \mathbb{N}
A. \mathbb{Z}
D. ring
C. field

7. If F is a field, $f(x) \in F[x], \alpha \in F$ is a root of $f(x)$ then \qquad
B. $(x+\alpha) \mid f(x)$
A. $(x-\alpha) \mid f(x)$
C. $f(x) \mid(x-\alpha)$
D. $f(x) \mid(x+\alpha)$
8. If I is an ideal in ring R then unit element in R / I is \qquad
B. 1
A. 0
C. R
D. $1+I$
9. Let R be an Euclidean domain, $a, b \in R, a$ is proper divisor of b then $d(b) d(a)$.
B. \leq
A. $=$
C. $>$
D. $<$
10. If $R=\mathbb{Z}+i \mathbb{Z}, f(x)=2 x^{2}-(1+i) x-2$ then content of f is \qquad
B. $1-i$
A. $1+i$
C. $2-i$
D. $2+i$
Q. 2 State whether the following statements are True or False.
(8)
1) \mathbb{Q} is not a field.
2) Every ideal is a subring in a ring.
3) The polynomial $1+x+x^{2} \in \mathbb{Q}$ is reducible.
4) Field has proper ideals.
5) $1+i$ is irreducible in $\mathbb{Z}+i \mathbb{Z}$.

6) The polynomial of degree n has exactly $n+1$ roots.
7) If $f(x)=3 x^{3}-2 x+1$ and $g(x)=x^{2}-1$ are polynomials in $\mathbb{R}[x]$ then $\operatorname{deg}(f g)$ is 5 .
8) Every Euclidean Domain is factorization domain.

Q. 3 Answer any TEN.

1) Define zero divisor in a ring.
2) Define Characteristic of a ring.
3) Find Characteristic of \mathbb{Z}_{7}.
4) Define an isomorphism for rings.
5) Define ideal in a ring.
6) Find $\mathbb{Z} / 5 \mathbb{Z}$.
7) Find the maximal ideal of a field.

8) Check whether $3+\sqrt{-5}$ is irreducible element or not.
9) Define principal ideal.
10) Find $C(f)$ for $f(x)=3 x^{3}-2 x^{2}+6 x+9$ in $\mathbb{Z}[x]$.
11) Prove that $x^{n}-5 \in \mathbb{Z}[x]$ is irreducible.
12) Find all roots of $x^{3}+5 x$ in \mathbb{Z}_{6}.

Q. 4 Attempt any FOUR.

1) Let R be a ring then prove that, for all $a, b, c \in R$
(i) $a 0=0$
(ii) $a(-b)=(-a) b=-(a b)$
(iii) $a(b-c)=a b-a c$
2) Let f be a ring homomorphism, then prove that f is one-one if and only if $\operatorname{Kerf}=\{0\}$.
3) If R is a commutative ring with 1 , then prove that every maximal ideal in R is a prime ideal.
4) State and prove the first isomorphism theorem for ring.
5) Prove that any two elements of U.F.D. have a GCD.
6) Show that the ring of Gaussian integers is an Euclidean domain.
7) Let R be a unique factorization domain, Prove that product of two primitive polynomials over R is also a primitive polynomial.
8) State and prove Eisenstein's criterion.
