SEAT No.___ [46]

No. of Printed Pages : 03

SARDAR PATEL UNIVERSITY **BSc Sem-VI Examination** Mathematics US06CMTH22-Ring Theory

Time : 10:00 TO 12:00

Date: 16-07-2021		Time : 10:00 TO 12:00
Q. 1 Answer the following by selecting con	rrect choice from the options.	(10)
1is a skew field but not field.		
Α. 7.	B. Q	P. Seience
	D. Ring of Quaterniar	
$C. M_2(\mathbb{R})$		7 * *
2is a not an integral domain.	B. 0	. P. Nagai
A. Z	D All of these	
C. $M_2(\mathbb{R})$	D. Anormos	
3is a non-commutative ring wi	th unit element.	
Δ 77.	B. Q	
	D. All of these	product of the printiles
C. M ₂ (K)		Q.2 State wheth
4. In $\mathbb{Z} + i\mathbb{Z}$, GCD of 2 and $-1 + 5i$ is	B. 2- <i>i</i>	
A. 2+ <i>i</i>	D. $1 - i$	 Every idea The polytic
C. <i>i</i>	roper Moals.	
5. Quotient field of ring of Gaussian inte	egers is	
A. $\mathbb{Z} + i\mathbb{Z}$	B. $\mathbb{Q} + i\mathbb{Q}$	
	D. $M_2(\mathbb{R})$	
	187	
6. Every integral domain can be imbedd	B. N	
A. Z	D. ring	2) Define Ch
C. field		ana brini (k.
	(\mathbf{n})	(P:T-O-)

No. of Princed Pages 102

it is

7. If F is a field, $f(x) \in F[x], \alpha \in F$ is a root of f(x) then B. $(x + \alpha)|f(x)$ A. $(x - \alpha)|f(x)$ D. $f(x)|(x + \alpha)$ C. $f(x)|(x - \alpha)$

8. If I is an ideal in ring R then unit element in R/I is _____

A. 0

C. *R*

9. Let *R* be an Euclidean domain, $a, b \in R$, *a* is proper divisor of *b* then d(b) d(a).

B. 1

B. \leq

D. <

B. 1 - i

D. 2 + i

D. 1 + I

- A. =
- C. >

10. If $R = \mathbb{Z} + i\mathbb{Z}$, $f(x) = 2x^2 - (1+i)x - 2$ then content of f is _____

- A. 1 + i
- C. 2 i

Q.2 State whether the following statements are True or False.

- 1) Q is not a field.
- 2) Every ideal is a subring in a ring.
- 3) The polynomial $1 + x + x^2 \in \mathbb{Q}$ is reducible.
- 4) Field has proper ideals.
- 5) 1 + i is irreducible in $\mathbb{Z} + i\mathbb{Z}$.
- 6) The polynomial of degree n has exactly n + 1 roots.

7) If $f(x) = 3x^3 - 2x + 1$ and $g(x) = x^2 - 1$ are polynomials in $\mathbb{R}[x]$ then deg(fg) is 5.

8) Every Euclidean Domain is factorization domain.

Q. 3 Answer any TEN.

- 1) Define zero divisor in a ring.
- 2) Define Characteristic of a ring.
- 3) Find Characteristic of \mathbb{Z}_7 .

(8)

- 4) Define an isomorphism for rings.
- 5) Define ideal in a ring.
- 6) Find $\mathbb{Z}/_{5\mathbb{Z}}$.
- 7) Find the maximal ideal of a field.
- 8) Check whether $3 + \sqrt{-5}$ is irreducible element or not.
- 9) Define principal ideal.

10) Find C(f) for $f(x) = 3x^3 - 2x^2 + 6x + 9$ in $\mathbb{Z}[x]$.

- **11)** Prove that $x^n 5 \in \mathbb{Z}[x]$ is irreducible.
- 12) Find all roots of $x^3 + 5x$ in \mathbb{Z}_6 .

Q.4 Attempt any FOUR.

1) Let R be a ring then prove that, for all $a, b, c \in R$

(i)
$$a0 = 0$$
 (ii) $a(-b) = (-a)b = -(ab)$ (iii) $a(b-c) = ab - ac$

- 2) Let f be a ring homomorphism, then prove that f is one-one if and only if $Kerf = \{0\}$.
- 3) If *R* is a commutative ring with 1, then prove that every maximal ideal in *R* is a prime ideal.
- 4) State and prove the first isomorphism theorem for ring.
- 5) Prove that any two elements of U.F.D. have a GCD.
- 6) Show that the ring of Gaussian integers is an Euclidean domain.
- 7) Let R be a unique factorization domain, Prove that product of two primitive polynomials over R is also a primitive polynomial.

-x-

8) State and prove Eisenstein's criterion.

(32)