			o. of Printed Pages : 2	
	[12	INESday, 29 December 2020	RARY	
		Time : 02:00 P.M. to 04:00 P.M. Subject : PHYSICS [US05CPHY24]	*	
		ANALOG AND DIGITAL CIRCUITS	Vage	
			<u> Marks : 70</u>	
		Note : All the symbols have their usual meaning.	(10)	
Q.1		Write correct answer for each of the following MCQs. (Attempt All)	(10)	
	1.	In low frequency response of a CE amplifier the ratio $\left \frac{A_{\nu(LF)}}{A_{\nu(MF)}}\right =$		
		(a) 0 (b) $1/2$ (c) $1/\sqrt{2}$ (d) $1/\sqrt{3}$ and a second distribution of the		
	2.	The frequency at which CE short circuit high frequency current gain drops to unity is deno by	oted	
		(a) f_{α} (b) f_{β} (c) f_{hfb} (d) f_{T}		
	3.	The optimum conversion efficiency of class B push-pull amplifier is(a) 25%(b) 78.5%(c) 50%(d) 75.8%		
	4.	An ideal Operational Amplifier has(a) infinite bandwidth(b) infinite output impedance(c) zero input impedance(d) none of the above		
	5.	The feedback resistor is replaced by when OP-AMP is used as an Integrator.(a) diode(b) Transistor(c) short circuit(d) capacitor		
ı	6.	The ASCII code is a bit code. (a) 8 (b) 7 (c) 16 (d) 32		
	7.	A standard TTL gate has a power dissipation of and propagation delay time of		
		(a) 22 mW, 6 ns (b) 1 mW, 35 ns (c) 10 mW, 10 ns (d) 20 mW, 3ns		
	8.	The XOR logic gate output is high if the inputs are(a) different(b) same(c) finite(d) infinite		
	9.	A flip flop is state device. (a) 2 (b) 4 (c) 8 (d) 16		
	10.	In a positive edge triggered JK flip flop, a high J and a high K produce the sta (a) low (b) high (c) toggle (d) inactive	ite.	
Q.2		Fill in the blanks and True-False. (Attempt All) Fill in the blanks.	(08)	
	1. 2.	The maximum voltage gain in a CE amplifier is produced in region. The ratio of Differential Mode open loop gain to the Common Mode open loop gain is ca	alled	
	3.	De Morgan's first theorem says that a NOR gate is equivalent to bubbled gate.		
	4.	Small Scale Integration(SSI) refers to ICs with fewer than gates on the chip.		
		[1] (P.T.O.)	مى	

•

State whether True or False

- 1. Class B push-pull amplifier is usually zero-biased.
- If the two inputs to a differential amplifier are exactly the same, then the output is the signal multiplied by two.
- 3. Most TTL gates use the totem-pole output arrangement.
- 4. Shift registers are used to store and transfer data.

Q.3 Answer briefly any ten of the following questions.

- 1. What are the functions of emitter bypass capacitor and coupling capacitor in transistor amplifier?
- 2. Explain : Crossover distortion.
- 3. Explain the drawbacks of transistor phase inverter circuit.
- 4. Explain Operational Amplifier.
- 5. List out the ideal characteristics of Op Amp.
- 6. Briefly explain unity gain bandwidth and slew rate.
- Convert following hexadecimal numbers to binary numbers.
 (i) C5E2 (ii) CD42
- 8. Explain briefly : ASCII code.
- 9. Compare IC 7400 and IC 5400 series TTL gates.
- **10.** Explain race condition.
- 11. What are functions of PRESET and CLEAR in flip-flop?
- 12. Define : Ring counter and Ripple counter.

Que.-4 Answer any four of the following questions in detail

- 1. Discuss the high frequency model for CE amplifier. Explain base-spreading resistance and transistor transconductance.
- 2. Giving construction and working of class A push-pull amplifier, obtain the expression for the output current.
- **3.** Draw the neat-labelled diagram and explain D.C. analysis of the bipolar differential amplifier having dual input balanced output configuration.
- 4. State the characteristics of ideal Op-Amp. Describe the application of Op-Amp, Summing Amplifier using inverting mode.
- 5. Giving proper logic circuit diagrams and truth tables explain Exclusive-OR gate and Exclusive-NOR gate.
- **6.** Giving proper circuit diagram explain the working of two inputs TTL NAND gate. How better switching speed can be obtained with Schottky TTL?
- 7. Explain edge triggered D flip-flop giving suitable circuit diagram and truth table. Also compare edge triggering with level clocking.

[2]

8. Define Register. Explain the working of 4-bits Shift left and Shift right registers.

[32]

(20)