SEAT NO.

No. of Printed Pages:2 SARDAR PATEL UNIVERSITY [108] 5th Semester B. Sc. (under CBCS) Examination-2020 P. Scie Mon day, 25th December 2020 3 02.00 pm to 04:00 pm 2 LIBRAR Subject : PHYSICS (US05CPHY23) (Thermodynamics And Statistical Mechanics) V. Nag **Total MARKS: 70** N.B.: (i) All the symbols have their usual meanings. (ii) Figures at the right side of questions indicate full marks. Q.1 To answer the multiple choice questions choose the correct option [10] At absolute zero temperature, the entropy of a system (1)(a) increases (b) remains zero (c) remains constant (d) decreases The area under the curve $\int T dS$ is equal to the (2)(a) work done (b) heat transferred (c) internal energy change (d) none of the these (3) A reversible cycle has following processes. (a) 4 isothermal (b) 4 adiabatic (c) 2 isothermal and 2 adiabatic (d) none of the above Integral of dQ/T of a reversible path is given by (4) (a) $S_i - S_f$ (b) $S_{f}-S_{i}$ (c) $S_i + S_f$ $(d) - S_i - S_e$ (5)Helmholtz function is given by (a) H = U + W (b) G = h - T S(c) h = U + P V(d) A = U - T SAn adiabatic process occurs at Constant (6)(a) Volume (b) Pressure (c) heat (d) Temperature Which of the following physical parameters remain constant in a system of micro-(7)canonical ensemble? (a) $[E, T, \mu]$ (b) [N, E, T](c) [N, V, E] (d) [E, V, μ] (8)The Stirling formula is ln N ! = (a) $\ln\left(\frac{N}{n}\right)$ (b) N ln n (c) N In N $(d) N \ln N - N$ (9)Maxwell-Boltzmann law is for the (a)) Distinguishable Particles (b) Indistinguishable Particles (c) Particles with half integral spin (d) Particles with integral spin The Spin quantum number(s) of the (10)is zero (a) Photon (b) Positron (c) α - Particle (d) π - meson 0.2 Fill in the Blanks and True-False [08] State whether True or False All Carnot engines operating between the same two reservoirs have different efficiency. (1)During a reversible adiabatic process, the entropy of a system remains constant. (2)The triple point on a U-V-S surface is a plane triangle. (3)For a reversible, isothermal, isobaric process the Gibbs function of the system not (4)remains constant.

[PAGE-1]

(P.T.O.)

	Fill	in the Blanks	
	(5)	Phase space is a dimensional space.	
	(6)	The three physical parameters [N, V, T] remains constant in	ensemble
	(7)	In M-B System, the mean separation between the particles is th	an the thermal
		length.	un the merman
	(8)	Maxwell-Boltzmann statistics cannot be applied to particle.	· ·
Q.3	Answer briefly the following questions (Attempt any Ten) [20]		
	(1)	Define Refrigerator and Refrigerant.	[20]
	(2)	Define Absolute zero.	
	(3)	Write two Ehrenfest's equations.	(.). (I) *
	(4)	Show that for isotropic solid compressibility $k = 3\delta$.	a Sai
	(5)		P.T.P. Science
	(6)	Give the difference between enthalpy and internal energy	IBRARY
	(7)	Write additive property of entropy.	*
	(8)	Define: Phase Space and Phase point.	I. V. Nagal
	(9)	Define: Macroscopic States and Microscopic states	
	(10)	Obtain expression for entropy in the Maxwell - Boltzmann System	
	(11)	Define Degeneracy and Chemical Potential.	
	(12)	Explain Grand Canonical Ensemble.	
Q.4	Answ (1)	er in detail of the following questions (Attempt any 4) Obtaining Clausius' theorem derive the equation of second law of therm	india (32)
	(2)	Derive Clausius Clapeyron's latent heat equation	
	(3)	Define entropy and obtain first and second T – dS equations	
	(4)	Explain Expansivity with proper diagram and figure.	¥.,
	(5)	State Liouville's theorem and prove that $\frac{d\rho}{dt} = 0$ using proper diagram	n
	(6)	What is Gibbs Paradox in microcanonical ensemble? How it is removed	
	(7)	Define Bose- Einstein system Obtain the expression for Bose Einstein	
		distribution of the particles among various states	
	$\langle 0 \rangle$		

Define Fermi - Dirac system obtain the expression for Fermi - Dirac distribution of (8) the particles among various states

X

[PAGNE-2]