[111]
 SARDAR PATEL UNIVERSITY
 V. V. Nagar
 B.Sc. Sem- V Examination
 US05CMTH24 (Metric Spaces and Topological Spaces)
 29 th December 2020, Tipesday 02:00 pm to 04.00 pm

Maximum Marks: 70
Q. 1 Choose the correct option in the following questions, mention the correct option in the answerbook.
(1) The set of all cluster points of $A=\left\{1, \frac{1}{3}, \frac{1}{9}, \ldots, \frac{1}{3^{n}}, \ldots\right\}$ in \mathbb{R}^{1} is. .
(a) \mathbb{N}
(b) A
(c) $A \cup\{0\}$
(d) $\{0\}$
(2) Let (X, \mathcal{T}) be a topological space and $Y \subset X$. Then Y is dense in X if
(a) $Y^{\prime}=X$
(b) $Y^{\prime}=\emptyset$
(c) $\bar{Y}=X$
(d) $\bar{Y}=\emptyset$
(3) Let ρ and σ be two metrics on M then which of the following is not a metric on M.
(a) 5σ
(b) $\sigma-\rho$
(c) $\sigma+\rho$
(d) $3 \sigma+2 \rho$
(4) Let $d: M \times M \rightarrow \mathbb{R}$ be a metric on M. Then which of the following is also a metric on M ?
(a) $d_{1}(x, y)=\min \{1, d(x, y)\}$
(b) $d_{1}(x, y)=\max \{1, d(x, y)\}$
(c) $d_{1}(x, y)=\min \{0, d(x, y)\}$
(d) $d_{1}(x, y)=\max \{0, d(x, y)\}$
(5) Which of the following is not an open subset of \mathbb{R}^{1}.
(a) $(1,3) \cup(5,7)$
(b) \mathbb{Q}
(c) ϕ
(d) $(-1,2) \cup(0,5)$
(6) In a topological space (X, \mathcal{T}), every \mathcal{T}-open set
(a) can not be a neighbourhood of all its points
(b) is T-closed also
(c) is a neighbourhood of all its points
(d) none
(7) If $E=[1,3) \cup\{4\} \subset \mathbb{R}^{1}$, then $\bar{E} \ldots$?
(a) $[1,3) \cup\{4\}$
(b) $[1,4]$
(c) $[1,3] \cup\{4\}$
(d) $[1,4)$
(8) Consider $M=[0,1]$ with discrete metric. Find $B[1 / 4 ; 1 / 2]=\ldots$

(a) $(0,1)$
(b) $[0,1]$
(c) $\{1 / 4\}$
(d) \mathbb{R}
(9) Which of the following is not a closed subset of \mathbb{R}.
(a) $[3,5] \cup[1,7)$
(b) \mathbb{R}
(c) $\{1,3,5,7,9\}$
(d) None of these
(10) Let $X=\{a, b\}$. Then for which of the following $\mathcal{T},(X, \mathcal{T})$ is not connected?
(a) $\{X, \emptyset,\{a\}\}$
(b) $\{X, \emptyset,\{a\},\{b\},\{a, b\}\}$
(c) $\{X, \emptyset,\{b\}\}$
(d) None of these
Q. 2 Do as directed:
(1) True or False: The closure of any subset of a metric space is always closed.
(2) True or False: Every function on Discrete matric space may not be continuous.
(3) True or False: Arbitrary intersection of open set is open set,
(4) True or False: In any metric space (M, p), M is always closed set.
(5) True or False: Every convergence sequence in a Metric space is a Cauchy sequence.
(6) Consider \mathbb{R} with discrete metric. Then $\mathrm{B}[4 ; 0.99]=\ldots$
(7) Consider \mathbb{R} with discrete metric. Then $\mathrm{B}[-5 ; 5]=\ldots$
(8) If $E=B[2 ; 5]$, then \bar{E} in \mathbb{R}^{1} is...
Q. 3 Attempt any Ten.
(1) Define Topological space and give its one example.
(2) Is $(0,2]$ a \mathcal{U}-neighbourhood of 1 ? Justify!
(3) Are closed interval of \mathbb{R}, u-closed ? where u ia usual Topology for \mathbb{R}.
(4) Prove that $\{a\}$ is closed set in usual Topology.
(5) Prove that every subset of \mathbb{R}_{d} is open.
(6) Define continuity of a function.
(7) Show that if ρ is a metric for a set M, then so is 4ρ.
(8) If $\left\{x_{n}\right\}$ is a convergent sequence in \mathbb{R}_{d}, then show that there exist a positive integer N such that $x_{N}=$ $x_{N+1}=x_{N+2}=\ldots$
(9) Define: (i) Convergence of sequence in metric space (ii) Cauchy sequence.
(10) Let A be an open subset of the metric space M. If $B \subset A$ is open in A, then prove that B is open in M.
(11) Is arbitrary union of closed sets is closed? Justify!.
(12) Let f be a continuous real valued function on $[a, b]$, then prove that f is bounded.
Q. 4 Attemt any Four.
(a) Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Prove that A is \mathcal{T}-open set iff A contains a \mathcal{T}-neighbourhood of each of its points.
(b) If $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ is a collection of \mathcal{U}-open subsets of \mathbb{R} then prove that $\cup\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ is a \mathcal{U}-open set.
(c) Let $\left(X, \mathcal{T}_{1}\right)$ and $\left(Y, \mathcal{T}_{2}\right)$ are topological spaces and f be a mapping of X into Y. Then f is continuous iff inverse image under f of every \mathcal{T}_{2} closed set is \mathcal{T}_{1} closed set.
(d) Show that every open subset G of \mathbb{R} can be written $G=\cup I_{n}$, where $I_{1}, I_{2}, I_{3}, \ldots$ are a finite or a countable number of open intervals which are mutually disjoint.
(e) Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A^{\prime} be the set of all cluster points of A. Prove that A is \mathcal{T}-closed iff $A^{\prime} \subset A$.
(f) Let (M, d) be a metric space and $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}$. Is d_{1} a metric on M ? Justify!
(g) Prove that if (X, \mathcal{T}) is disconnected iff there is a non empty proper subset of X that is both \mathcal{T} - open and \mathcal{T} - closed.
(h) Define interior of a set. Let (X, \mathcal{T}) be a topological space and A be a subset of X. Then prove That $\operatorname{Int}(A)$ is the largest open subset of A.

