

[1]

(P.T.O.)

- Q.3 Answer the following in short. (Attempt any 10)
- (1) Prove that every group has unique identity element.
- (2) Prove that group G, prove that every element of G has unique inverse.
- (3) For group G prove that $(ab)^{-1} = b^{-1}a^{-1}$
- (4) Find all right cosets of $-3\mathbb{Z}$ in \mathbb{Z} .
- (5) Prove that any infinite cyclic group is isomorphic to \mathbb{Z} .
- (6) Let H be any subgroup of group G. Then prove that $aH = H \Leftrightarrow a \in H$.
- (7) Define: Group homomorphism.
- (8) Prove that homeomorphic image of cyclic group is also cyclic
- (9) Define: Direct sum of subgroups.
- (10) Explain Signature of permutation with example.
- (11) Prove that S_n is a finite non commutative group of order n!.
- (12) Find all Sylow 2 subgroups of S_3 .
- Q.4 Answer the following questions. (Attempt any 4)
- (1) Let H and K be subgroups of group G. Then prove that HK is subgroup of G iff HK = KH.
- (2) Let G be a cyclic group and H be a subgroup of G. Then prove that H is cyclic.
- (3) Prove that every infinite cyclic group has only one non-trivial automorphism.
- (4) Let G = (a) be a finite cyclic group of order n. Then prove that the mapping $\theta: G \to G$ defined by $\theta(a) = a^m$ is an automorphism of G iff m is relatively prime to n.
- (5) State and prove First isomorphism theorem.
- (6) Prove that G is direct product of subgroups H and K iff (i) every $x \in G$ can be uniquely expressed as x = hk, $h \in H$, $k \in K$ (ii) hk = kh, $h \in H$, $k \in K$

F.2

(7) State and prove Cayley's theorem.

(8) State and prove Sylow Theorem I.

[32]

P. Scie

LIBRAR

Nad

P. &

>