\qquad No. of Printed Pages: 3
[70]

Sardar Patel University, Vallabh Vidyanagar

B.Sc Sem: V Subject : Mathematics

Date: $24 / 12 / 2020$ US05CMTH21 [Real Analysis] Time:2. 00 to 4.00 Max.Marks: 70
Q. 1 Choose the correct option for each of the following.
(1) Which of the following is an ordered field ?
(a) Q
(b) R
(c) N
(d) none of these
(2) The Smallest number of a set, if exists is ...
(a) the supremum of the set
(b) the infimum of the set (c) not unique
(d) none

(3) The supremum of $\left\{\frac{1}{m}+\frac{1}{n} / m, n \in N\right\}$ is
(a) 0
(b) 1
(c) 2
(d) none
(4) Every open interval in R is \qquad set
(a) an open (b) a closed (c) open and closed (d) none
(5) The derived set of $A=\{1,2,3,4\}$ is
(a) A
(b) R
(c) \varnothing
(d) Z
(6) The closure of Qi.e \tilde{Q} is
(a) N
(b) Q
(c) \varnothing
(d) R
(7) The Range of sequence is always ...
(a) empty
(b) infinite (c) non- empty
(d) none
(8) Every convergent sequence is
(a) oscillating (b) bounded (c) unbounded (d) none
(9) A positive term series $\sum \frac{1}{n^{p}}$ is convergent iff \qquad .
(a) $p=1$
(b) $0<p<1$
(c) $p>1$
(d) $p<0$
(10) A series $\sum u_{n}$ is convergent then $\lim _{n \rightarrow \infty} u_{n}$
(a) $\neq 0$
(b) =0 \quad (c) $=1$ (d) does not exists
Q. 2 Do as directed.

[8]
(1) The infimum of $\left\{\frac{(-1)^{n}}{n} / n \in N\right\}$ is
(2) If $S=(0,5) \cup\{5,6,7\}$ then the greatest element of S is
(3) If $S_{n}=\left(\frac{-1}{n}, \frac{1}{n}\right), \forall n \in \mathbb{N}$ then $\cap_{n=1}^{\infty} S_{n}=$. \qquad
(4).. \qquad is a limit point of a set $S=\left\{\frac{1}{n} / n \in N\right\}$
(5) The range of sequence $\left\{(-1)^{n} / n \in N\right\}$ is ...
\qquad
(6) True Or False: A sequence without limit point is bouded.
(7) True Or False :If a positive term series $\sum_{n=1}^{\infty} u_{n}$ is convergent then its partial sums is bounded above.
(8) True Or False :The series $\sum_{n=1}^{\infty} \frac{n}{n+1}$ is convergent.
Q. 3 Attempt anyTEN:
(1) Define : An Ordered Field.
(2) Prove that the greatest lower bound of a set S is unique, if it exist.
(3) Find the g.I.b and I.u.b of $\left\{1+\frac{(-1)^{n}}{n} / n \in N\right\}$ if they exist.
(4) Prove that every open set is a union of open intervals.
(5) Define: An open set.
(6)Define: A limit point of a set .
(7)Define: A convergent sequence .
(8) Prove that every convergent sequence is bounded.
(9) Prove that $\lim _{n \rightarrow \infty} \frac{3+\sqrt{2} n}{n}=\sqrt{2}$
(10) Define : Infinite series
(11) Prove that the series $\sum \frac{1}{n!}$ is convergent.
(12) Investigate the behaviour of the series whose $n^{\text {th }}$ term is $n \frac{1}{n}$.
(1) State and Prove the Archimedean property of R.
(2) Prove that the set of all rationals Q is not an order complete field.
(3) Prove that a set is closed iff its complement is open.
(4) Prove that the union of arbitrary family of open sets is open.
(5) State and Prove Bozano-Weierstrass theorem for sequence.
(6) State and Prove Cauchy's first theorem on limits.
(7) State and Prove comparision test of first type.
(8) Prove that the positive term geometric series $1+r+r^{2}+\cdots$ converges for $r<1$ and diverges to ∞ for $r \geq 1$.
\qquad

