\qquad

SARDAR PATEL UNIVERSITY

S. Y. B.Sc. Examination: Semester-IV

COURSE: PHYSICS CODE: US04CPHY22

COURSE TITLE: Classical, Quantum and Solid State Physics

Date: 13-04-2022, Wednesday
Time: 03:00 PM To 05:00 PM

Q-1 Answer the following Multiple Choice Questions: (Attempt all, Each of 1 mark)

1 The areal velocity of the particle in a central force field is \qquad .
(a) zero
(b) constant
(c) infinite
(d) variabie

2 has an eccentricity of zero.
(a) A parabola
(b) A hyperbola
(c) A circle
(d) An ellipse

3 In the graph of energy density $E_{\lambda} \rightarrow$ wavelength λ for black body radiation, the value of λ_{m} shift towards \qquad as temperature increases.
(a) origin
(b) center
(c) infinity
(d) no way

4 In Compton effect, the frequency of the scattered photon \qquad .
(a) increases
(b) decreases
(c) becomes constant
(d) becomes ∞

5 Wave function has value as $\frac{1}{\sqrt{3}}+\frac{\sqrt{2 i}}{\sqrt{3}}$ then its probability density will be \qquad .
(a) 1
(b) $\frac{2}{3}$
(c) $\frac{1}{2}$
(d) 2

6 Atomic Packing Factor (APF) for HCP structure is \qquad .
(a) 0.52
(b) 0.68
(c) 0.74
(d) 6.00

7 The unit cell having more than one lattice point is called \qquad cell.
(a) primitive
(b) non- primitive
(c) primary
(d) secondary

8 The total number of crystallographic symmetry elements of cubic system are \qquad -.
(a) 2
(b) 7
(c) 14
(d) 23

9 The conversion of a substance from the solid to the gaseous state without it becoming liquid is due to
\qquad energy.
(a) dissociation
(b) Iattice
(c) ionization
(d) sublimation

10 At equilibrium separation $r=r_{0}$, the force $F=\frac{d}{d r}[U(r)]$ is \qquad .
(a) zero
(b) half
(c) double
(d) infinite

Q-2 Answer the following questions as asked: (Attempt all, Each of 1 mark)

Fill in the blanks:

1 If a particle system in the central force field has the spherical symmetry, the angular momentum of the particle is \qquad .
2 For larger wavelengths, Planck's radiation law becomes \qquad law.
3 Miller indices of a plane which cuts the intercepts of $1,2,5$ units along the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively are \qquad -
4 The Hydrogen bond is of \qquad type of bond.

Write True or False:

5 The Coulomb's inverse square law is applicable to electrical charges in motion.
6 A non-relativistic free particle of velocity v is moving in one dimension, then its potential energy can be taken as zero.
7 The co-ordination number of SC structure is 6 .
8 The value of Madelung constant is 1.75 for the CsCl structure.

Q-3 Answer the following questions in brief: (Attempt Any 10 out of 12, each of 2 marks)
1 Write the equation for the laws of gravitational and electrostatic forces in the vector form.
2 Define a central force. Give the examples of motion in a central force field.
3 Give the equation and statement of the Gauss's law for a continuous distribution of charges within the closed surface.
4 A Hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$ in radius. Use the Heisenberg uncertainty principle to estimate the minimum energy an electron can have in this atom. $\left[\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right.$, $\left.m=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right]$
5 Write the equations that state the De Broglie's hypothesis. What will be the De Broglie wavelength of a wave which is associated with an electron accelerated through a potential difference of 150 volts?
6 Write the admissibility conditions on the wave function.
7 Define the terms: Lattice, Basis and the Crystal.
8 What is symmetry operation? Name the two groups of symmetry operation.
9 Draw (110) and (211) planes in cubic crystal.
10 Draw the Born - Haber cycle for NaCl molecule. Write the equation for its lattice energy $\left(\mathrm{U}_{0}\right)$.
11 Explain the sp^{3} hybridization steps for ${ }_{6} \mathrm{C}$ atom with the necessary sketch.
12 Draw the representation of covalent bond for the molecules of N_{2} and CH_{4}.

Q-4 Answer the following questions in detail: (Attempt Any 4 out of 8, each of 8 marks)
1 How does a two-body problem reduce to an equivalent one-body problem? Compare the corresponding factors such as mass, distance and Centre of mass in the two cases.
2 Discuss the developments of Kepler's law of planetary motion by stating its three laws. Derive the Kepler's third law also.
3 State Planck's assumptions used to derive the law for black body radiation. Derive Planck's radiation law in terms of the wavelength.
4 Derive the Ehrenfest's theorem. Also write its significance.
5 What are the lattice parameters of a unit cell? Draw and discuss seven crystal systems for fourteen Bravais lattice types in 3-dimensions.
6 Define Atomic Packing Factor. Calculate APF for the SC and FCC structures.
7 What is Madelung constant? Calculate the Madelung constant for: (i) the one dimensional NaCl lattice in a linear chain of ions of alternative sign and (ii) the three dimensional lattice of NaCl structure.
8 Write the basic assumptions for formation of stable ionic crystal. Define the Radius Ratio $\left(\mathrm{R}_{\mathrm{r}}\right)$ for MX compound. Calculate the Radius Ratio $\left(\mathrm{R}_{\mathrm{r}}\right)$ for CsCl structure.

