SARDAR PATEL UNIVERSITY

B.Sc. (IV-Semester) EXAMINATION 2022

Monday, $11^{\text {th }}$ April
03:00pm-05:00pm
US04CMTH22-Mathematics
Partial Differential Equations

Total Marks: 70

Note: Figures to the right indicates full marks of question.
Q: 1 Answer the following by selecting the correct answer from the given options:

1. Two linearly independent solutionsof $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ represents-------
a. family of surfaces
b. family of curves
c. a point in space
d. none of these
2. The solution of the Pfaffian differential equation $2 y d x+2 x d y-d z=0$ is \qquad
a. $x^{2}+y^{2}-3 z^{2}=c$
b. $2 x y-z^{2}=c$
c. $2 x y-z=c$
d. $2 x^{3}-3 z^{2}=c$
3. Which of the following is not a solution of: $\frac{x d x}{y^{2} z}=\frac{d y}{x z}=\frac{d z}{x y^{2}}$
a. $x^{3}-y^{3}=c$
b. $2 x^{3}-3 z^{2}=c$
c. $2 y^{3}-3 z^{2}=c$
d. $x-3 y=c$
4. Degree of the P.D.E $\frac{\partial^{2} z}{\partial x^{2}}+x^{2}\left(\frac{\partial^{2} z}{\partial y^{2}}\right)^{3}+z^{2}\left(\frac{\partial z}{\partial y}\right)^{5}=0$ is-----
a. 5
b. 2
c. 3
d. 4
5. Let $F(u, v)=0$ where $u \equiv y-x=c_{1}$ and $u \equiv z-x=c_{2}$ be general solution of $p+q=1$ then solution passing through curve $x=0, y^{2}=z$ is
a. $(y-x)^{2}=z$
b. $(y-x)^{2}=z-x$
c. $(z-x)^{2}=y-x$
d. none of these
6. Partial differential equation for $z=f(x-y)$ is-
a. $z=x-y$
b. $p=q$
C. $p^{2}-q=0$
d. $p+q=0$
7. Which of the following is non-linear partial differential equation?
a. $p-q=z$
b. $x p-y q=z$
c. $p q=z$
d. $x^{2} p+y q=z$
8. In Charpit's method equation involving only p and q, then Charpit's equation is of the form
a. $\frac{d p}{x}=\frac{d q}{y}$
b. $\frac{d p}{0}=\frac{d q}{0}$
c. $\frac{d p}{f_{x}}=\frac{d q}{f_{y}}$
d. $\frac{d x}{0}=\frac{d y}{0}$
9. For linear P.D.E. with constant co-efficient $F\left(D, D^{\prime}\right)=f(x, y)$ the operator $D^{\prime}=$
a. $\frac{\partial}{\partial x}$
b. $\frac{\partial}{\partial p}$
C. $\frac{\partial}{\partial q}$
d. $\frac{\partial}{\partial y}$
10. In second order P.D.E. of type $z=f(u)+g(v)+w, u, v, w$ are functions of $x \& y$ then $s=---$
a. $\frac{\partial^{2} Z}{\partial x \partial y}$
b. $\frac{\partial^{2} z}{\partial y^{2}}$
c. $\frac{\partial y}{\partial x}$
d. $\frac{\partial^{2} z}{\partial x^{2}}$
11. Solution of $\frac{d x}{a^{2}}=\frac{d y}{b^{2}}=\frac{d z}{c^{2}}$ is given by \qquad
12. Two systems of curves are said be orthogonal if each curve of one family cut each curve of the other family at angle
13. True or False: In partial differential equation $\frac{\partial z}{\partial x}$ is denoted by q.
14. True or False: Higher order P.D.E. for a function $z=f(x, y)$ is given with relation $p \frac{\partial(u, v)}{\partial(y, z)}+q \frac{\partial(u, v)}{\partial(z, x)}=\frac{\partial(u, v)}{\partial(x, y)}$ where u, v are function of x, y, z.
15. True or False: A complete integral of the P.D.E. $z=p x+q y+p+q$ is $. z=a x+b y$.
16. True or False: The system of equations $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ are said to be compatible if $[f, g]=0$.
17. The general form of second order partial differential equation is
18. The equation $z=p x+q y+f(p, q)$ is said to be in - \qquad form.

Q:3 Answer in brief of the following questions. (Any Ten)

1. Solve: $\frac{d x}{y^{2}(x-y)}=-\frac{d y}{x^{2}(x-y)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$
2. Determine whether Pfaffian differential equation $a^{2} y^{2} z^{2} d x+b^{2} x^{2} z^{2} d y+c^{2} x^{2} y^{2} d z=0$ is integrable?
3. Solve: $\frac{d x}{y+z}=\frac{d y}{x+z}=\frac{d z}{x+y}$
4. Eliminate a and b from $a x^{2}+b y^{2}+z^{2}=1$.
5. Obtain partial differential equation for a set of sphere having radius λ and centre on $X Y$ plane.
6. Find integral surface of $x^{2}+y=c_{1}, x z+y=c_{2}$ passes through the line $x=0, y=1$.
7. Verify that $z=\sqrt{2 x+a}+\sqrt{2 y+b}$ is the complete integral of $z=\frac{1}{p}+\frac{1}{a}$
8. Find Complete integral of the equation $p+q=p q$
9. Explain non-linear P.D.E. with suitable example.
10. Solve: $r=a^{2} t$
11. Solve: $\left(4 D^{2}+12 D D^{\prime}+9 D^{\prime 2}\right) z=0$
12. Find P.I. of the equation $\left(D^{2}+D^{\prime}\right) z=2 y-x^{2}$.

13. If X is a vector such that $X, \operatorname{curl} X=0$ and μ is an arbitrary function of x, y, z then $(\mu X) \cdot \operatorname{curl}(\mu X)=0$.
14. Find the orthogonal trajectories on the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \propto$ at its intersection with the family of planes parallel to $z=0$.
15. Find the general solution of the linear P.D.E. $p x\left(z-2 y^{2}\right)=(z-q y)\left(z-y^{2}-2 x^{3}\right)$
16. Find the general integral of the linear P.D.E $(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)$ and also find the particular integral which passes through the line $x=1, y=0$.
17. Show that the equations $x p-y q=x, x^{2} p+q=x z$ are compatible and find its solution.
18. Show that surface of the equation $(x-a)^{2}+(y-b)^{2}+z^{2}=1$ is a complete integral of non-linear partial differential equation $z^{2}\left(p^{2}+q^{2}+1\right)=1$. Determine the general solution by finding envelope of its particular solution.
19. If $u_{1}, u_{2}, u_{3}, \cdots \cdots-u_{n}$ are solution of homogeneous linear partial differential equation $F\left(D, D^{\prime}\right) z=0$ then summation $\sum_{r=1}^{n} C_{r} u_{r}$ is also a solution of $\left(D ; D^{\prime}\right) z=0$.
20. Find the general solution of $\left(D^{2}-D D^{\prime}\right) z=\cos x \cdot \cos 2 y$

(3)

